Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods Mol Biol ; 2642: 365-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944888

RESUMO

Plants display a great diversity of particular cell types that obviously perform functions and regulations that are essential for successful growth and development, whether under optimal or adverse conditions. The functions performed by each of these particular cell types must be associated with specific transcriptomic, proteomic, and metabolic profiles that cannot be disentangled by analyzing whole plant organs and tissues. Laser microdissection is a technique for the collection of specific cell types in plant organs and tissues comprising heterogeneous cell populations. It has been successfully used for physiological and molecular studies. Laser microdissection can be applied to any plant species as long as it is possible to reliably identify the cell types of interest. Here, we describe step by step, using citrus as a model plant, a fast, simple, easy to perform, and experimentally validated protocol to collect cells from the abscission zone, a specific tissue that is difficult to access and whose activity is important in the response of plants to adverse environmental conditions.


Assuntos
Microdissecção , Proteômica , Microdissecção/métodos , Plantas/genética , Perfilação da Expressão Gênica , Lasers
3.
Front Plant Sci ; 13: 982683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119632

RESUMO

To identify key traits brought about by citrus domestication, we have analyzed the transcriptomes of the pulp of developing fruitlets of inedible wild Ichang papeda (Citrus ichangensis), acidic Sun Chu Sha Kat mandarin (C. reticulata) and three palatable segregants of a cross between commercial Clementine (C. x clementina) and W. Murcott (C. x reticulata) mandarins, two pummelo/mandarin admixtures of worldwide distribution. RNA-seq comparison between the wild citrus and the ancestral sour mandarin identified 7267 differentially expressed genes, out of which 2342 were mapped to 117 KEGG pathways. From the remaining genes, a set of 2832 genes was functionally annotated and grouped into 45 user-defined categories. The data suggest that domestication promoted fundamental growth processes to the detriment of the production of chemical defenses, namely, alkaloids, terpenoids, phenylpropanoids, flavonoids, glucosinolates and cyanogenic glucosides. In the papeda, the generation of energy to support a more active secondary metabolism appears to be dependent upon upregulation of glycolysis, fatty acid degradation, Calvin cycle, oxidative phosphorylation, and ATP-citrate lyase and GABA pathways. In the acidic mandarin, downregulation of cytosolic citrate degradation was concomitant with vacuolar citrate accumulation. These changes affected nitrogen and carbon allocation in both species leading to major differences in organoleptic properties since the reduction of unpleasant secondary metabolites increases palatability while acidity reduces acceptability. The comparison between the segregants and the acidic mandarin identified 357 transcripts characterized by the occurrence in the three segregants of additional downregulation of secondary metabolites and basic structural cell wall components. The segregants also showed upregulation of genes involved in the synthesis of methyl anthranilate and furaneol, key substances of pleasant fruity aroma and flavor, and of sugar transporters relevant for sugar accumulation. Transcriptome and qPCR analysis in developing and ripe fruit of a set of genes previously associated with citric acid accumulation, demonstrated that lower acidity is linked to downregulation of these regulatory genes in the segregants. The results suggest that the transition of inedible papeda to sour mandarin implicated drastic gene expression reprograming of pivotal pathways of the primary and secondary metabolism, while palatable mandarins evolved through progressive refining of palatability properties, especially acidity.

4.
BMC Plant Biol ; 22(1): 123, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300613

RESUMO

BACKGROUND: Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS: Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, ß-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION: In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.


Assuntos
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Domesticação , Frutas/genética , Frutas/metabolismo , Transcriptoma
5.
Plant Genome ; 15(1): e20162, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796688

RESUMO

Most of the hundreds of citrus varieties are derived from spontaneous mutations. We characterized the dynamics of single-nucleotide mosaicism in a 36-yr-old clementine (Citrus ×clementina hort. ex Tanaka) tree, a commercial citrus whose vegetative behavior is known in detail. Whole-genome sequencing identified 73 reliable somatic mutations, 48% of which were transitions from G/C to A/T, suggesting ultraviolet (UV) exposure as mutagen. The mutations accumulated in sectorized areas of the tree in a nested hierarchy determined by the branching pattern, although some variants detected in the basal parts were also found in the new growth and were fixed in some branches and leaves of much younger age. The estimate of mutation rates in our tree was 4.4 × 10-10 bp-1 yr-1 , a rate in the range reported in other perennials. Assuming a perfect configuration and taking advantage of previous counts on the number of total leaves of typical clementine trees, these mutation determinations allowed to estimate for the first time the total number of variants present in a standard adult tree (1,500-5,000) and the somatic mutations generated in a typical leaf flush (0.92-1.19). From an evolutionary standpoint, the sectoral distribution of somatic mutations and the habit of periodic foliar renewal of long-lived plants appear to increase genetic heterogeneity and, therefore, the adaptive role of somatic mutations reducing the mutational load and providing fitness benefits.


Assuntos
Citrus , Mosaicismo , Citrus/genética , Mutação , Taxa de Mutação , Nucleotídeos
6.
Plant Physiol ; 187(2): 829-845, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608960

RESUMO

Domesticated citrus varieties are woody perennials and interspecific hybrid crops of global economic and nutritional importance. The citrus fruit "hesperidium" is a unique morphological innovation not found in any other plant lineage. Efforts to improve the nutritional quality of the fruit are predicated on understanding the underlying regulatory mechanisms responsible for fruit development, including temporal control of chlorophyll degradation and carotenoid biosynthesis. Here, we investigated the molecular basis of the navel orange (Citrus sinensis) brown flavedo mutation, which conditions flavedo that is brown instead of orange. To overcome the limitations of using traditional genetic approaches in citrus and other woody perennials, we developed a strategy to elucidate the underlying genetic lesion. We used a multi-omics approach to collect data from several genetic sources and plant chimeras to successfully decipher this mutation. The multi-omics strategy applied here will be valuable in driving future gene discovery efforts in citrus as well as in other woody perennial plants. The comparison of transcriptomic and genomic data from multiple genotypes and plant sectors revealed an underlying lesion in the gene encoding STAY-GREEN (SGR) protein, which simultaneously regulates carotenoid biosynthesis and chlorophyll degradation. However, unlike SGR of other plant species, we found that the carotenoid and chlorophyll regulatory activities could be uncoupled in the case of certain SGR alleles in citrus and thus we propose a model for the molecular mechanism underlying the brown flavedo phenotype. The economic and nutritional value of citrus makes these findings of wide interest. The strategy implemented, and the results obtained, constitute an advance for agro-industry by driving opportunities for citrus crop improvement.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo
8.
Plant Genome ; 14(3): e20133, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464512

RESUMO

We performed genomic analyses on species and varieties of the genus Citrus to identify several determinants of domestication, based on the pattern of pummelo [Citrus maxima (Burr. f) Merr] and mandarin (Citrus reticulata Blanco) admixture into the ancestral genome, as well as population genetic tests at smaller scales. Domestication impacted gene families regulating pivotal components of citrus flavor (such as acidity) because in edible mandarin varieties, chromosome areas with negative Tajimas values were enriched with genes associated with the regulation of citric acid. Detection of sweeps in edible mandarins that diverged from wild relatives indicated that domestication reduced chemical defenses involving cyanogenesis and alkaloid synthesis, thus increasing palatability. Also, a cluster of SAUR genes in domesticated mandarins derived from the pummelo genome appears to contain candidate genes controlling fruit size. Similarly, conserved stretches of pure mandarin areas were likely important as well for domestication, as, for example, a fragment in chromosome 1 that is involved in the apomictic reproduction of most edible mandarins. Interestingly, our results also support the hypothesis that various genes subject to selective pressure during evolution or derived from whole genome duplication events later became potential targets of domestication.


Assuntos
Citrus , Citrus/genética , Domesticação , Genoma de Planta , Genômica , Filogenia
9.
Plant Genome ; 14(3): e20104, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275210

RESUMO

We performed genomic analyses on wild species of the genus Citrus to identify major determinants of evolution. The most notable effect occurred on the pathogen-defense genes, as observed in many other plant genera. The gene space was also characterized by changes in gene families intimately related to relevant biochemical properties of citrus fruit, such as pectin modifying enzymes, HDR (4-hydroxy-3-methylbut-2-enyl diphosphate reductase) genes, and O-methyltransferases. Citrus fruits are highly abundant on pectins and secondary metabolites such as terpenoids and flavonoids, the targets of these families. Other gene types under positive selection, expanded through tandem duplications and retained as triplets from whole genome duplications, codified for purple acid phosphatases and MATE-efflux proteins. Although speciation has not been especially rapid in the genus, analyses of selective pressure at the codon level revealed that the extant species evolved from the ancestral citrus radiation show signatures of pervasive adaptive evolution and is therefore potentially responsible for the vast phenotypic differences observed among current species.


Assuntos
Citrus , Citrus/química , Citrus/genética , Flavonoides , Genômica
10.
Nat Commun ; 12(1): 4377, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312382

RESUMO

The origin and dispersal of cultivated and wild mandarin and related citrus are poorly understood. Here, comparative genome analysis of 69 new east Asian genomes and other mainland Asian citrus reveals a previously unrecognized wild sexual species native to the Ryukyu Islands: C. ryukyuensis sp. nov. The taxonomic complexity of east Asian mandarins then collapses to a satisfying simplicity, accounting for tachibana, shiikuwasha, and other traditional Ryukyuan mandarin types as homoploid hybrid species formed by combining C. ryukyuensis with various mainland mandarins. These hybrid species reproduce clonally by apomictic seed, a trait shared with oranges, grapefruits, lemons and many cultivated mandarins. We trace the origin of apomixis alleles in citrus to mangshanyeju wild mandarins, which played a central role in citrus domestication via adaptive wild introgression. Our results provide a coherent biogeographic framework for understanding the diversity and domestication of mandarin-type citrus through speciation, admixture, and rapid diffusion of apomictic reproduction.


Assuntos
Apomixia/genética , Citrus/genética , Frutas/genética , Genoma de Planta/genética , Alelos , Citrus/classificação , Ásia Oriental , Frequência do Gene , Genética Populacional , Genótipo , Geografia , Haplótipos , Hibridização Genética , Filogenia , Especificidade da Espécie
11.
BMC Plant Biol ; 21(1): 226, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020584

RESUMO

BACKGROUND: Abscission is an active, organized, and highly coordinated cell separation process enabling the detachment of aerial organs through the modification of cell-to-cell adhesion and breakdown of cell walls at specific sites on the plant body known as abscission zones. In Arabidopsis thaliana, abscission of floral organs and cauline leaves is regulated by the interaction of the hormonal peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), a pair of redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2), and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors. However, the functionality of this abscission signaling module has not yet been demonstrated in other plant species. RESULTS: The expression of the pair of NbenIDA1 homeologs and the receptor NbenHAE.1 was supressed at the base of the corolla tube by the inoculation of two virus-induced gene silencing (VIGS) constructs in Nicotiana benthamiana. These gene suppression events arrested corolla abscission but did not produce any obvious effect on plant growth. VIGS plants retained a higher number of corollas attached to the flowers than control plants, an observation related to a greater corolla breakstrength. The arrest of corolla abscission was associated with the preservation of the parenchyma tissue at the base of the corolla tube that, in contrast, was virtually collapsed in normal corollas. In contrast, the inoculation of a viral vector construct that increased the expression of NbenIDA1A at the base of the corolla tube negatively affected the growth of the inoculated plants accelerating the timing of both corolla senescence and abscission. However, the heterologous ectopic overexpression of citrus CitIDA3 and Arabidopsis AtIDA in N. benthamiana did not alter the standard plant phenotype suggesting that the proteolytic processing machinery was unable to yield active peptides. CONCLUSION: Here, we demonstrate that the pair of NbenIDA1 homeologs encoding small peptides of the IDA-like family and the receptor NbenHAE.1 control cellular breakdown at the base of the corolla tube awhere an adventitious AZ should be formed and, therefore, corolla abscission in N. benthamiana flowers. Altogether, our results provide the first evidence supporting the notion that the IDA-HAE/HSL2 signaling module is conserved in angiosperms.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Flores/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Alinhamento de Sequência , Transdução de Sinais/genética , Nicotiana/crescimento & desenvolvimento
12.
Genome ; 63(9): 437-444, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32758104

RESUMO

Citrus is an extremely important genus in terms of world fruit production. Despite its economic importance and the small genome sizes of its species (2n = 18, 1C = 430 ± 68 Mbp), entire genomic assemblies have only recently become available for some of its representatives. Together with the previous CMA/DAPI banding and fluorescence in situ hybridization (FISH) in the group, these data are important for understanding the complex relationships between its species and for assisting breeding programs. To anchor genomic data with the cytogenetic map of mandarin (Citrus reticulata), the parental species of several economically important hybrids such as sweet orange and clementine, 18 BAC (bacterial artificial chromosome) clones were used. Eleven clementine BACs were positioned by BAC-FISH, doubling the number of chromosome markers so far available for BAC-FISH in citrus. Additionally, six previously mapped BACs were end-sequenced, allowing, together with one BAC previously sequenced, their assignment to scaffolds and the subsequent integration of chromosomes and the genome assembly. This study therefore established correlations between mandarin scaffolds and chromosomes, allowing further structural genomic and comparative study with the sweet orange genome, as well as insights into the chromosomal evolution of the group.


Assuntos
Mapeamento Cromossômico , Citrus/genética , Genoma de Planta , Sequenciamento Completo do Genoma , Sequência de Bases , Cruzamento , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Marcadores Genéticos , Hibridização in Situ Fluorescente , Análise de Sequência
13.
PLoS One ; 15(5): e0233120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421736

RESUMO

Day length is a determinant of flowering time in rice. Phytochromes participate in flowering regulation by measuring the number of daylight hours to which the plant is exposed. Here we describe G123, a rice mutant generated by irradiation, which displays insensitivity to the photoperiod and early flowering under both long day and short day conditions. To detect the mutation responsible for the early flowering phenotype exhibited by G123, we generated an F2 population, derived from crossing with the wild-type, and used a pipeline to detect genomic structural variation, initially developed for human genomes. We detected a deletion in the G123 genome that affects the PHOTOPERIOD SENSITIVITY13 (SE13) gene, which encodes a phytochromobilin synthase, an enzyme implicated in phytochrome chromophore biosynthesis. The transcriptomic analysis, performed by RNA-seq, in the G123 plants indicated an alteration in photosynthesis and other processes related to response to light. The expression patterns of the main flowering regulatory genes, such as Ghd7, Ghd8 and PRR37, were altered in the plants grown under both long day and short day conditions. These findings indicate that phytochromes are also involved in the regulation of these genes under short day conditions, and extend the role of phytochromes in flowering regulation in rice.


Assuntos
Flores/metabolismo , Flores/fisiologia , Oryza/genética , Oryza/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/metabolismo , Fotossíntese/genética , Proteínas de Plantas/genética
14.
BMC Plant Biol ; 20(1): 34, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959115

RESUMO

BACKGROUND: IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like signaling peptides and the associated HAE (HAESA)-like family of receptor kinases were originally reported in the model plant Arabidopsis thaliana (Arabidopsis) to be deeply involved in the regulation of abscission. Actually, IDA peptides, as cell-to-cell communication elements, appear to be implicated in many developmental processes that rely on cell separation events, and even in the responses to abiotic stresses. However, the knowledge related to the molecular machinery regulating abscission in economically important crops is scarce. In this work, we determined the conservation and phylogeny of the IDA-like and HAE-like gene families in relevant species of the Solanaceae family and analyzed the expression of these genes in the allopolyploid Nicotiana benthamiana, in order to identify members involved in abscission, stem growth and in the response to drought conditions. RESULTS: The phylogenetic relationships among the IDA-like members of the Solanaceae studied, grouped the two pairs of NbenIDA1 and NbenIDA2 protein homeologs with the Arabidopsis prepropeptides related to abscission. Analysis of promoter regions searching for regulatory elements showed that these two pairs of homeologs contained both hormonal and drought response elements, although NbenIDA2A lacked the hormonal regulatory elements. Expression analyses showed that the pair of NbenIDA1 homeologs were upregulated during corolla abscission. NbenIDA1 and NbenIDA2 pairs showed tissue differential expression under water stress conditions, since NbenIDA1 homeologs were highly expressed in stressed leaves while NbenIDA2 homeologs, especially NbenIDA2B, were highly expressed in stressed roots. In non-stressed active growing plants, nodes and internodes were the tissues with the highest expression levels of all members of the IDA-like family and their putative HAE-like receptors. CONCLUSION: Our results suggest that the pair of NbenIDA1 homeologs are involved in the natural process of corolla abscission while both pairs of NbenIDA1 and NbenIDA2 homeologs are implicated in the response to water stress. The data also suggest that IDA peptides may be important during stem growth and development. These results provide additional evidence that the functional module formed by IDA peptides and its receptor kinases, as defined in Arabidopsis, may also be conserved in Solanaceae.


Assuntos
Flores/genética , Nicotiana/genética , Proteínas de Plantas/genética , Caules de Planta/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Água/metabolismo
15.
Genome Biol Evol ; 11(12): 3478-3495, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710678

RESUMO

Speciation of the genus Citrus from a common ancestor has recently been established to begin ∼8 Ma during the late Miocene, a period of major climatic alterations. Here, we report the changes in activity of Citrus LTR retrotransposons during the process of diversification that gave rise to the current Citrus species. To reach this goal, we analyzed four pure species that diverged early during Citrus speciation, three recent admixtures derived from those species and an outgroup of the Citrus clade. More than 30,000 retrotransposons were grouped in ten linages. Estimations of LTR insertion times revealed that retrotransposon activity followed a species-specific pattern of change that could be ascribed to one of three different models. In some genomes, the expected pattern of gradual transposon accumulation was suddenly arrested during the radiation of the ancestor that gave birth to the current Citrus species. The individualized analyses of retrotransposon lineages showed that in each and every species studied, not all lineages follow the general pattern of the species itself. For instance, in most of the genomes, the retrotransposon activity of elements from the SIRE lineage reached its highest level just before Citrus speciation, while for Retrofit elements, it has been steadily growing. Based on these observations, we propose that Citrus retrotransposons may respond to stressful conditions driving speciation as a part of the genetic response involved in adaptation. This proposal implies that the evolving conditions of each species interact with the internal regulatory mechanisms of the genome controlling the proliferation of mobile elements.


Assuntos
Citrus/genética , Especiação Genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Citrus/classificação , Evolução Molecular , Genoma de Planta/genética , Modelos Genéticos , Filogenia , Especificidade da Espécie
16.
BMC Plant Biol ; 19(1): 401, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31510935

RESUMO

BACKGROUND: Small RNAs regulate a wide variety of processes in plants, from organ development to both biotic and abiotic stress response. Being master regulators in genetic networks, their biogenesis and action is a fundamental aspect to characterize in order to understand plant growth and development. Three main gene families are critical components of RNA silencing: DICER-LIKE (DCL), ARGONAUTE (AGO) and RNA-DEPENDENT RNA POLYMERASE (RDR). Even though they have been characterized in other plant species, there is no information about these gene families in Citrus sinensis, one of the most important fruit species from both economical and nutritional reasons. While small RNAs have been implicated in the regulation of multiple aspects of plant growth and development, their role in the abscission process has not been characterized yet. RESULTS: Using genome-wide analysis and a phylogenetic approach, we identified a total of 13 AGO, 5 DCL and 7 RDR genes. We characterized their expression patterns in root, leaf, flesh, peel and embryo samples using RNA-seq data. Moreover, we studied their role in fruit abscission through gene expression analysis in fruit rind compared to abscission zone from samples obtained by laser capture microdissection. Interestingly, we determined that the expression of several RNA silencing factors are down-regulated in fruit abscission zone, being particularly represented gene components of the RNA-dependent DNA Methylation pathway, indicating that repression of this process is necessary for fruit abscission to take place in Citrus sinensis. CONCLUSIONS: The members of these 3 families present characteristic conserved domains and distinct expression patterns. We provide a detailed analysis of the members of these families and improved the annotation of some of these genes based on RNA-seq data. Our data suggests that the RNA-dependent DNA Methylation pathway is involved in the important fruit abscission process in C. sinensis.


Assuntos
Citrus sinensis/fisiologia , Metilação de DNA/fisiologia , Frutas/crescimento & desenvolvimento , Genes de Plantas/fisiologia , Genoma de Planta/fisiologia , Citrus sinensis/genética , Citrus sinensis/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia
17.
BMC Plant Biol ; 19(1): 47, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704398

RESUMO

BACKGROUND: Harvest time is a relevant economic trait in citrus, and selection of cultivars with different fruit maturity periods has a remarkable impact in the market share. Generation of early- and late-maturing cultivars is an important target for citrus breeders, therefore, generation of knowledge regarding the genetic mechanisms controlling the ripening process and causing the early and late phenotypes is crucial. In this work we analyze the evolution of the transcriptome during fruit ripening in 3 sport mutations derived from the Fina clementine (Citrus clementina) mandarin: Clemenules (CLE), Arrufatina (ARR) and Hernandina (HER) that differ in their harvesting periods. CLE is considered a mid-season cultivar while ARR and HER are early- and late-ripening mutants, respectively. RESULTS: We used RNA-Seq technology to carry out a time course analysis of the transcriptome of the 3 mutations along the ripening period. The results indicated that in these mutants, earliness and lateness during fruit ripening correlated with the advancement or delay in the expression of a set of genes that may be implicated in the maturation process. A detailed analysis of the transcription factors known to be involved in the regulation of fruit ripening identified a member of the MADS box family whose expression was lower in ARR, the early-ripening mutant, and higher in HER, the late-ripening mutant. The pattern of expression of this gene during the maturation period was basically contrary to those of the ethylene biosynthetic genes, SAM and ACC synthases and ACC oxidase. The gene was present in hemizygous dose in the early-ripening mutant. CONCLUSIONS: Our analysis provides new clues about the genetic control of fruit ripening in citrus and allowed the identification of a transcription factor that could be involved in the early phenotype.


Assuntos
Citrus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/fisiologia , Proteínas de Plantas/fisiologia , Citrus/genética , Citrus/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Característica Quantitativa Herdável
18.
Plant Sci ; 276: 63-72, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348329

RESUMO

Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation.


Assuntos
Citrus/genética , Malus/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Solanum lycopersicum/genética , Vitis/genética , Citrus/fisiologia , Etilenos/metabolismo , Frutas/genética , Frutas/fisiologia , Solanum lycopersicum/fisiologia , Malus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Vitis/fisiologia
19.
BMC Genomics ; 19(1): 706, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30253735

RESUMO

BACKGROUND: Rice plants are sensitive to the agro-climate conditions, being photoperiod one of main factor contributing to their adaptation to the region where they are grown. Dissecting the genetic bases underlying diversity in rice populations adapted to specific environmental conditions is a fundamental resource for breeding. In this study we have analysed a collection of japonica varieties adapted to temperate regions to perform association studies with traits of high agronomical interest such as heading date, plant height, number of panicles, panicle length and number of grains per panicle. RESULTS: We have performed a genome wide association study using a panel of 1713 SNPs that, based on previous linkage disequilibrium estimations, provides a full coverage of the whole genome. We have found a total of 43 SNPs associated with variations in the different traits. The identified SNPs were distributed across the genome except in chromosome 12, where no associated SNPs were found. The inspection of the vicinity of these markers also revealed a set of genes associated with physiological functions strongly linked to agronomic traits. Of special relevance are two genes involved in gibberellin homeostasis that are associated with plant height and panicle length. We also detected novel associated sites with heading date, panicle length and number of grain per panicle. CONCLUSION: We have identified loci associated with important agronomic traits among cultivars adapted to temperate conditions. Some of these markers co-localized with already known genes or QTLs, but the association also provided novel molecular markers that can be of help to elucidate the complicated genetic mechanism controlling important agronomic traits, as flowering regulation in the non-dependent photoperiod pathway. The detected associated markers may provide important tools for the genetic improvement of rice cultivars in temperate regions.


Assuntos
Oryza/genética , Agricultura , Clima , Estudo de Associação Genômica Ampla , Oryza/anatomia & histologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
Nature ; 554(7692): 311-316, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414943

RESUMO

The genus Citrus, comprising some of the most widely cultivated fruit crops worldwide, includes an uncertain number of species. Here we describe ten natural citrus species, using genomic, phylogenetic and biogeographic analyses of 60 accessions representing diverse citrus germ plasms, and propose that citrus diversified during the late Miocene epoch through a rapid southeast Asian radiation that correlates with a marked weakening of the monsoons. A second radiation enabled by migration across the Wallace line gave rise to the Australian limes in the early Pliocene epoch. Further identification and analyses of hybrids and admixed genomes provides insights into the genealogy of major commercial cultivars of citrus. Among mandarins and sweet orange, we find an extensive network of relatedness that illuminates the domestication of these groups. Widespread pummelo admixture among these mandarins and its correlation with fruit size and acidity suggests a plausible role of pummelo introgression in the selection of palatable mandarins. This work provides a new evolutionary framework for the genus Citrus.


Assuntos
Citrus/classificação , Citrus/genética , Evolução Molecular , Especiação Genética , Genoma de Planta/genética , Genômica , Filogenia , Sudeste Asiático , Biodiversidade , Produção Agrícola/história , Haplótipos/genética , Heterozigoto , História Antiga , Migração Humana , Hibridização Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...