Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783639

RESUMO

Hypopharyngeal cancer gene regulatory networks and therapeutic molecules are a disease that is associated with EGFR-mutated lung adenocarcinoma. Here we utilized a bioinformatics approach to identify genetic commonalities between these two diseases. To this end, we examined microarray datasets from GEO (Gene Expression Omnibus) to identify differentially expressed genes, common genes, and hub genes between the selected two diseases. Our analyses identified potential therapeutic molecules for the selected diseases based on 10 hub genes with the highest interactions according to the degree topology method and the maximum clique centrality (MCC). These therapeutic molecules may have the potential for simultaneous treatment of these diseases.

2.
Comput Biol Med ; 168: 107789, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042105

RESUMO

The worldwide COVID-19 pandemic has profoundly influenced the health and everyday experiences of individuals across the planet. It is a highly contagious respiratory disease requiring early and accurate detection to curb its rapid transmission. Initial testing methods primarily revolved around identifying the genetic composition of the coronavirus, exhibiting a relatively low detection rate and requiring a time-intensive procedure. To address this challenge, experts have suggested using radiological imagery, particularly chest X-rays, as a valuable approach within the diagnostic protocol. This study investigates the potential of leveraging radiographic imaging (X-rays) with deep learning algorithms to swiftly and precisely identify COVID-19 patients. The proposed approach elevates the detection accuracy by fine-tuning with appropriate layers on various established transfer learning models. The experimentation was conducted on a COVID-19 X-ray dataset containing 2000 images. The accuracy rates achieved were impressive of 99.55%, 97.32%, 99.11%, 99.55%, 99.11% and 100% for Xception, InceptionResNetV2, ResNet50 , ResNet50V2, EfficientNetB0 and EfficientNetB4 respectively. The fine-tuned EfficientNetB4 achieved an excellent accuracy score, showcasing its potential as a robust COVID-19 detection model. Furthermore, EfficientNetB4 excelled in identifying Lung disease using Chest X-ray dataset containing 4,350 Images, achieving remarkable performance with an accuracy of 99.17%, precision of 99.13%, recall of 99.16%, and f1-score of 99.14%. These results highlight the promise of fine-tuned transfer learning for efficient lung detection through medical imaging, especially with X-ray images. This research offers radiologists an effective means of aiding rapid and precise COVID-19 diagnosis and contributes valuable assistance for healthcare professionals in accurately identifying affected patients.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Pandemias , Poder Psicológico
3.
Genes (Basel) ; 14(9)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37761941

RESUMO

Biomarker-based cancer identification and classification tools are widely used in bioinformatics and machine learning fields. However, the high dimensionality of microarray gene expression data poses a challenge for identifying important genes in cancer diagnosis. Many feature selection algorithms optimize cancer diagnosis by selecting optimal features. This article proposes an ensemble rank-based feature selection method (EFSM) and an ensemble weighted average voting classifier (VT) to overcome this challenge. The EFSM uses a ranking method that aggregates features from individual selection methods to efficiently discover the most relevant and useful features. The VT combines support vector machine, k-nearest neighbor, and decision tree algorithms to create an ensemble model. The proposed method was tested on three benchmark datasets and compared to existing built-in ensemble models. The results show that our model achieved higher accuracy, with 100% for leukaemia, 94.74% for colon cancer, and 94.34% for the 11-tumor dataset. This study concludes by identifying a subset of the most important cancer-causing genes and demonstrating their significance compared to the original data. The proposed approach surpasses existing strategies in accuracy and stability, significantly impacting the development of ML-based gene analysis. It detects vital genes with higher precision and stability than other existing methods.


Assuntos
Neoplasias , Transcriptoma , Transcriptoma/genética , Perfilação da Expressão Gênica , Algoritmos , Benchmarking , Análise por Conglomerados , Neoplasias/diagnóstico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...