Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(9): 739-757, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33601405

RESUMO

EFTUD2 is mutated in patients with mandibulofacial dysostosis with microcephaly (MFDM). We generated a mutant mouse line with conditional mutation in Eftud2 and used Wnt1-Cre2 to delete it in neural crest cells. Homozygous deletion of Eftud2 causes brain and craniofacial malformations, affecting the same precursors as in MFDM patients. RNAseq analysis of embryonic heads revealed a significant increase in exon skipping and increased levels of an alternatively spliced Mdm2 transcript lacking exon 3. Exon skipping in Mdm2 was also increased in O9-1 mouse neural crest cells after siRNA knock-down of Eftud2 and in MFDM patient cells. Moreover, we found increased nuclear P53, higher expression of P53-target genes and increased cell death. Finally, overactivation of the P53 pathway in Eftud2 knockdown cells was attenuated by overexpression of non-spliced Mdm2, and craniofacial development was improved when Eftud2-mutant embryos were treated with Pifithrin-α, an inhibitor of P53. Thus, our work indicates that the P53-pathway can be targeted to prevent craniofacial abnormalities and shows a previously unknown role for alternative splicing of Mdm2 in the etiology of MFDM.


Assuntos
Ribonucleoproteína Nuclear Pequena U5 , Proteína Supressora de Tumor p53 , Animais , Homozigoto , Humanos , Camundongos , Mutação , Fatores de Alongamento de Peptídeos/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Deleção de Sequência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
J Cell Sci ; 133(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33172985

RESUMO

Cdc48 (known as VCP in mammals) is a highly conserved ATPase chaperone that plays an essential role in the assembly and disassembly of protein-DNA complexes and in degradation of misfolded proteins. We find that in Saccharomyces cerevisiae budding yeast, Cdc48 accumulates during cellular stress at intranuclear protein quality control sites (INQ). We show that Cdc48 function is required to suppress INQ formation under non-stress conditions and to promote recovery following genotoxic stress. Cdc48 physically associates with the INQ substrate and splicing factor Hsh155, and regulates its assembly with partner proteins. Accordingly, cdc48 mutants have defects in splicing and show spontaneous distribution of Hsh155 to INQ aggregates, where it is stabilized. Overall, this study shows that Cdc48 regulates deposition of proteins at INQ and suggests a previously unknown role for Cdc48 in the regulation or stabilization of splicing subcomplexes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Ribonucleoproteína Nuclear Pequena U2 , Proteínas de Saccharomyces cerevisiae , Proteína com Valosina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fatores de Processamento de RNA , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/genética
3.
Curr Genet ; 65(4): 905-912, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30953124

RESUMO

The spliceosome has been implicated in genome maintenance for decades. Recently, a surge in discoveries in cancer has suggested that the oncogenic mechanism of spliceosomal defects may involve defective genome stability. The action of the core spliceosome prevents R-loop accumulation, and regulates the expression of genome stability factors. At the same time, specific spliceosomal components have non-canonical functions in genome maintenance. Here we review these different models, highlighting their discovery in different model systems, and describing their potential impact on human disease states.


Assuntos
Processamento Alternativo/genética , Doenças Genéticas Inatas/genética , Genoma Humano/genética , Instabilidade Genômica/genética , Dano ao DNA/genética , Humanos , Mutação , Splicing de RNA/genética , Spliceossomos/genética
4.
Mol Biol Cell ; 30(2): 191-200, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30462576

RESUMO

RNA processing mutants have been broadly implicated in genome stability, but mechanistic links are often unclear. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in yeast splicing factor mutants and find that mitotic defects, and in some cases R-loop accumulation, are causes of genome instability. In both cases, alterations in gene expression, rather than direct cis effects, are likely to contribute to instability. Genome instability in splicing mutants is exacerbated by loss of the spindle-assembly checkpoint protein Mad1. Moreover, removal of the intron from the α-tubulin gene TUB1 restores genome integrity. Thus, differing penetrance and selective effects on the transcriptome can lead to a range of phenotypes in conditional mutants of the spliceosome, including multiple routes to genome instability.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica , Mutação/genética , Splicing de RNA/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Dano ao DNA , Epistasia Genética , Mitose/genética , Fenótipo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Tubulina (Proteína)/metabolismo
5.
J Cell Biol ; 216(12): 4027-4040, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978642

RESUMO

Upon genotoxic stress, dynamic relocalization events control DNA repair as well as alterations of the transcriptome and proteome, enabling stress recovery. How these events may influence one another is only partly known. Beginning with a cytological screen of genome stability proteins, we find that the splicing factor Hsh155 disassembles from its partners and localizes to both intranuclear and cytoplasmic protein quality control (PQC) aggregates under alkylation stress. Aggregate sequestration of Hsh155 occurs at nuclear and then cytoplasmic sites in a manner that is regulated by molecular chaperones and requires TORC1 activity signaling through the Sfp1 transcription factor. This dynamic behavior is associated with intron retention in ribosomal protein gene transcripts, a decrease in splicing efficiency, and more rapid recovery from stress. Collectively, our analyses suggest a model in which some proteins evicted from chromatin and undergoing transcriptional remodeling during stress are targeted to PQC sites to influence gene expression changes and facilitate stress recovery.


Assuntos
Dano ao DNA , Reparo do DNA , Ribonucleoproteína Nuclear Pequena U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcriptoma , Processamento Alternativo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromatina/metabolismo , Cromatina/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Agregados Proteicos , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
6.
J Cell Biol ; 216(12): 3991-4005, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29042409

RESUMO

Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability.


Assuntos
Síndrome de Bloom/genética , DNA/química , Instabilidade Genômica , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Fibroblastos/metabolismo , Fibroblastos/patologia , Dosagem de Genes , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , RNA/genética , RNA/metabolismo , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-28735739

RESUMO

Bisulfite, in the form of sodium bisulfite or metabisulfite, is used commercially as a food preservative. Bisulfite is used in the laboratory as a single-stranded DNA mutagen in epigenomic analyses of DNA methylation. Recently it has also been used on whole yeast cells to induce mutations in exposed single-stranded regions in vivo. To understand the effects of bisulfite on live cells we conducted a genome-wide screen for bisulfite sensitive mutants in yeast. Screening the deletion mutant array, and collections of essential gene mutants we define a genetic network of bisulfite sensitive mutants. Validation of screen hits revealed hyper-sensitivity of transcription and RNA processing mutants, rather than DNA repair pathways and follow-up analyses support a role in perturbation of RNA transactions. We propose a model in which bisulfite-modified nucleotides may interfere with transcription or RNA metabolism when used in vivo.


Assuntos
Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sulfitos/toxicidade , Transcrição Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla
8.
G3 (Bethesda) ; 6(1): 133-40, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26564951

RESUMO

Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.


Assuntos
Antineoplásicos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Genoma , Genômica , Mitomicina/toxicidade , Mutação/efeitos dos fármacos , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Dano ao DNA/efeitos dos fármacos , Genes Letais , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Insercional , Mutagênicos/farmacologia , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
9.
Trends Genet ; 31(8): 465-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25940384

RESUMO

Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon.


Assuntos
Meio Ambiente , Modelos Biológicos , Mutação/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Taxa de Mutação , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...