Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38117617

RESUMO

Point cloud completion is the task of producing a complete 3D shape given an input of a partial point cloud. It has become a vital process in 3D computer graphics, vision and applications such as autonomous driving, robotics, and augmented reality. These applications often rely on the presence of a complete 3D representation of the environment. Over the past few years, many completion algorithms have been proposed and a substantial amount of research has been carried out. However, there are not many in-depth surveys that summarise the research progress in such a way that allows users to make an informed choice of what algorithms to employ given the type of data they have, the end result they want, the challenges they may face and the possible strategies they could use. In this study, we present a comprehensive survey and classification of papers on point cloud completion untill August 2023 based on the strategies, techniques, inputs, outputs, and network architectures. We will also cover datasets, evaluation methods, and application areas in point cloud completion. Finally, we discuss challenges faced by the research community and future research directions.

2.
IEEE Trans Vis Comput Graph ; 23(1): 71-80, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875135

RESUMO

In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that may be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics.

3.
IEEE Trans Vis Comput Graph ; 19(7): 1199-217, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23661012

RESUMO

Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends.

4.
IEEE Trans Pattern Anal Mach Intell ; 34(11): 2134-46, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22231592

RESUMO

Due to the popularity of computer games and animation, research on 3D articulated geometry model retrieval has attracted a lot of attention in recent years. However, most existing works extract high-dimensional features to represent models and suffer from practical limitations. First, misalignment in high-dimensional features may produce unreliable euclidean distances and affect retrieval accuracy. Second, the curse of dimensionality also degrades efficiency. In this paper, we propose an embedding retrieval framework to improve the practicability of these methods. It is based on a manifold learning technique, the Diffusion Map (DM). We project all pairwise distances onto a low-dimensional space. This improves retrieval accuracy because intercluster distances are exaggerated. Then we adapt the Density-Weighted Nyström extension and further propose a novel step to locally align the Nyström embedding to the eigensolver embedding so as to reduce extension error and preserve retrieval accuracy. Finally, we propose a heuristic to handle disconnected manifolds by augmenting the kernel matrix with multiple similarity measures and shortcut edges, and further discuss the choice of DM parameters. We have incorporated two existing matching algorithms for testing. Our experimental results show improvement in precision at high recalls and in speed. Our work provides a robust retrieval framework for the matching of multimedia data that lie on manifolds.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
IEEE Trans Vis Comput Graph ; 13(3): 470-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17356214

RESUMO

With the increasing popularity of 3D applications such as computer games, a lot of 3D geometry models are being created. To encourage sharing and reuse, techniques that support matching and retrieval of these models are emerging. However, only a few of them can handle deformable models, that is, models of different poses, and these methods are generally very slow. In this paper, we present a novel method for efficient matching and retrieval of 3D deformable models. Our research idea stresses using both topological and geometric features at the same time. First, we propose Topological Point Ring (TPR) analysis to locate reliable topological points and rings. Second, we capture both local and global geometric information to characterize each of these topological features. To compare the similarity of two models, we adapt the Earth Mover Distance (EMD) as the distance function and construct an indexing tree to accelerate the retrieval process. We demonstrate the performance of the new method, both in terms of accuracy and speed, through a large number of experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...