Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255489

RESUMO

This paper presents a numerical investigation of the flexural behavior of timber beams externally strengthened with carbon-fiber-reinforced polymer (CFRP) sheets. At first, the accuracy of linear elastic and elastic-plastic models in predicting the behavior of bare timber beams was compared. Then, two modeling approaches (i.e., the perfect bond method and progressive damage technique using the cohesive zone model (CZM)) were considered to simulate the interfacial behavior between FRP and timber. The models were validated against published experimental data, and the most accurate numerical procedure was identified and subsequently used for a parametric study. The length of FRP sheets varied from 50% to 100% of the total length of the beam, while different FRP layers were considered. Moreover, the effects of two strengthening configurations (i.e., FRP attached in the tensile zone only and in both the tensile and compressive zones) on load-deflection response, flexural strength, and flexural rigidity were considered. The results showed that elastic-plastic models are more accurate than linear elastic models in predicting the flexural strength and failure patterns of bare timber beams. In addition, with increasing FRP length, the increase in flexural strength ranged from 10.3% to 52.9%, while no further increase in flexural strength could be achieved beyond an effective length of 80% of the total length of the beam. Attaching the FRP to both the tensile and compressive zone was more effective in enhancing the flexural properties of the timber beam than attaching the FRP to the tensile zone only.

2.
Materials (Basel) ; 16(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895618

RESUMO

In recent years, with the fast development of the technology and the economy associated with the growth of the global population, the construction of economical, sustainable, and eco-friendly infrastructures with improved ductility, resistance to external elements, and durability has increased the need for the development of high-performance construction materials [...].

3.
Polymers (Basel) ; 13(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917164

RESUMO

Due to the high load-bearing capacity and light weight, composite leaf spring with variable width and variable thickness has been increasingly used in the automobile industry to replace the conventional steel leaf spring with a heavy weight. The optimum structural design of composite leaf spring is particularly favorable for the weight reduction. In this study, an effective algorithm is developed for structural optimization of composite leaf spring. The mechanical performance of composite leaf spring with designed dimensions is characterized using a combined experimental and computational approach. Specifically, the composite leaf spring with variable width and variable thickness was prepared using the filament winding process, and the three-dimensional finite element (FE) model of the designed composite leaf spring is developed. The experimental sample and FE model of composite leaf spring are tested under the three-point bending method. From experimental and simulation results, it is shown that the bending stiffness of the designed leaf spring meets the design requirement in the automotive industry, while the results of stress calculation along all directions meet the requirements of material strength requirement. The developed algorithm contributes to the design method for optimizing the stiffness and strength performance of the composite leaf spring.

4.
Nanotechnology ; 32(32)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33794512

RESUMO

With the incorporation of carbon nanotubes (CNTs), CNT/polypropylene (PP) nanocomposites are found to possess enhanced mechanical properties, but the reinforcing effect is reduced at large added CNT weight percentages due to CNT aggregation. Optimizing the properties of a nanocomposite requires a fundamental understanding of the effects of CNT dispersion on the nanocomposite. In this work, coarse-grained molecular models of CNT/PP nanocomposites are constructed, which consist of randomly dispersed or aggregated CNT bundles. Our simulation results reveal that with randomly dispersed CNT bundles, the nanocomposite shows properties that continuously improve with increasing CNT contents due to the effective CNT/PP interface and the reinforcing effect of CNTs. By comparison, the nanocomposite with aggregated CNT clusters exhibits a decline in yield strength at CNT contents over 3 wt%, which results from a reduced CNT load-carrying capacity due to the formation of structural voids in the interfacial region. This study achieves anin situobservation of the structural void evolution of loaded nanocomposites, provides valuable insights into the effects of CNT dispersion on the mechanics of CNT/PP nanocomposites, and paves the way for optimizing the design of nanocomposites with superior mechanical properties by designing the CNT dispersion in the structure.

5.
J Mol Graph Model ; 101: 107757, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32992236

RESUMO

With a network structure formed by cross-linking process, epoxy resins possess excellent mechanical properties. Among them, SU-8 photoresist (bisphenol-A epoxy resin) is widely used as coatings in microelectronic applications. This paper reports molecular dynamics simulations of the cross-linking process of SU-8 photoresist with detailed scripts and illustrates fracture behaviors of cross-linked network with in situ visualizations of atomistic details. The epoxy molecular models with the cross-linking degree of 20%, 40%, 60% and 80% are constructed, which possess density, glass transition temperature, and mechanical properties in a good agreement with existing experimental studies on SU-8. For the models with cross-linking degree of 60% and 80%, uncoiling phenomena observed during large-strain tensile deformations are proved to be associated with significant drops of stress and the dissipation of local concentrated energy developed within the stretched structure, which indicates that the coiling of molecular chains is a critical structure for strength of epoxy molecules. The findings from this paper enrich our understandings of molecular details of SU-8 photoresist upon fracture and contribute as a useful reference to atomistic modeling database of cross-linked polymers.


Assuntos
Resinas Epóxi , Polímeros , Simulação de Dinâmica Molecular , Temperatura , Temperatura de Transição
6.
ACS Appl Mater Interfaces ; 12(39): 44163-44171, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32897684

RESUMO

Interfacial bonding between a fiber and a matrix plays an essential role in composites, especially in fiber-reinforced cementitious composites that are superior forms for bearing flexural and tension load in construction applications. Yet, despite the importance, effective and economic approaches to improve the interfacial bonding between a steel fiber and a cementitious matrix remain unfeasible. Herein, we report a pathway adopting a silane coupling agent (SCA) to modify an interfacial transition zone (ITZ) and enhance interfacial bonding. This approach involves coating a SCA layer onto a steel fiber, where tight physical and chemical bondings (via cross-linking of silicate chains) with a cementitious matrix are formed, leading to an 83.5% increase in pullout energy. Combining nanoindentation and an atomistic force microscope with molecular simulation, we find that SCA increases the surface roughness of the steel fiber, accelerates the hydration reaction of cement clinker, and promotes the volume fraction of the C-S-H phase, inducing a denser and more uniform ITZ with an adequate stress-transfer capability that shifts the mode of failure from interfacial debonding to cement cracking. This work presents an effective and economical approach to improve interfacial bonding, and it enables us to design more durable fiber-reinforced cementitious composites, which can be massively used to build innovative infrastructures.

7.
Sensors (Basel) ; 19(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678346

RESUMO

Defects between fiber reinforced polymer (FRP) and repaired concrete components may easily come out due to misoperation during manufacturing, environmental deterioration, or impact from external load during service life. The defects may cause a degraded structure performance and even the unexpected structural failure. Different non-destructive techniques (NDTs) and sensors have been developed to assess the defects in FRP bonded system. The information of linking up the detected defects by NDTs and repair schemes is needed by assessing the criticality of detected defects. In this study, FRP confined concrete columns with interfacial defects were experimentally tested to determine the interfacial defect criticality on structural performance. It is found that interfacial defect can reduce the FRP confinement effectiveness, and ultimate strength and its corresponding strain of column deteriorate significantly if the interfacial defect area is larger than 50% of total confinement area. Meanwhile, proposed analytical model considering the defect ratio is validated for the prediction of stress⁻strain behavior of FRP confined columns. The evaluation of defect criticality could be made by comparing predicted stress⁻strain behavior with the original design to determine corresponding maintenance strategies.

8.
Nanotechnology ; 29(2): 024001, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057750

RESUMO

The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.

9.
Nanomaterials (Basel) ; 7(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027979

RESUMO

The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...