Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(9): 2078-2083, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35213154

RESUMO

Understanding exciton diffusion properties in organic semiconductor films is crucial for organic solar cells because excitons need to diffuse to an electron donor/acceptor interface to dissociate into charges. We previously found that singlet excitons generated in the thin films of a novel naphthobisoxadiazole-based low-bandgap polymer PNOz4T exhibit two-dimensional exciton diffusion characteristics along the backbone and π-stacking directions owing to the HJ-aggregate property of PNOz4T. However, the diffusion constants along these directions could not be determined owing to the difficulty of data analysis. Herein, we present a detailed analysis based on a simulated annealing metaheuristic. We found that intrachain exciton motion can be faster than interchain hopping. On the basis of temperature dependence measurements, we found that exciton diffusion is more favorable at lower temperatures because the coherent component partly contributes to exciton motion.

2.
Dalton Trans ; 51(1): 74-84, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34881749

RESUMO

Development of novel near-infrared (NIR) emitters is essential for satisfying the growing demands of advancing optical telecommunication and medical technology. We synthesized elemental skeletons composed of robust π-conjugated systems including two boron-fused azo groups, which showed an intense emission in the red or near-infrared (NIR) region both in solution and solid states. Two types of bisboron complexes with different aromatic linkers showed emission properties with larger bathochromic shifts and emission efficiencies in solution than the corresponding monoboron complex. Transient absorption spectroscopy disclosed that the inferior optical properties of the monoboron complex can be attributed to fast nonradiative deactivation accompanied by a large structural relaxation after photoexcitation. The expanded π-conjugated system through multiple boron-fused azo groups can contribute to rigid molecular skeletons followed by improved emission properties. Moreover, the anti-form of the bisboron complex with fluorine groups in the opposite directions to the π-plane exhibited crystallization-induced emission enhancement in the NIR region. The molecular design by using multiple boron-fused azo groups is expected to be a critical strategy for creating novel NIR emitters.

3.
ACS Appl Mater Interfaces ; 13(29): 34357-34366, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254768

RESUMO

Herein, we study the origin of differences in open-circuit voltage (VOC) for polymer:fullerene solar cells employing highly crystalline conjugated polymers (PTzBT) based on the same thiophene-thiazolothiazole backbone with different side chains. By analyzing the temperature dependence of VOC and cyclic voltammogram, we find that the difference in VOC originates in the different cascaded energy structures for the highest occupied molecular orbital (HOMO) levels in the interfacial mixed phase. Furthermore, we find that this is due to the stabilization of HOMO caused by the different branching of side chains on the basis of density functional theory calculation. Finally, we discuss the molecular design strategy based on side-chain engineering for ideal interfacial cascaded energy structures leading to higher VOC and photocurrent simultaneously.

4.
J Chem Phys ; 153(16): 161102, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138408

RESUMO

In this paper, we introduce a new strategy for improving the efficiency of upconversion emissions based on triplet-triplet exciton annihilation (TTA-UC) in the solid state. We designed a ternary blend system consisting of a triplet sensitizer (TS), an exciton-transporting host polymer, and a small amount of an annihilator in which the triplet-state energies of the TS, host, and annihilator decrease in this order. The key idea underpinning this concept involves first transferring the triplet excitons generated by the TS to the host and then to the annihilator, driven by the cascaded triplet energy landscape. Because of the small annihilator blend ratio, the local density of triplet excitons in the annihilator domain is higher than those in conventional binary TS/annihilator systems, which is advantageous for TTA-UC because TTA is a density-dependent bimolecular reaction. We tracked the triplet exciton dynamics in the ternary blend film by transient absorption spectroscopy. Host triplet excitons are generated through triplet energy transfer from the TS following intersystem crossing in the TS. These triplet excitons then diffuse in the host domain and accumulate in the annihilator domain. The accumulated triplet excitons undergo TTA to generate singlet excitons that are higher in energy than the excitation source, resulting in UC emission. Based on the excitation-intensity and blend-ratio dependences of TTA-UC, we found that our concept has a positive impact on accelerating TTA.

5.
Chem Sci ; 11(12): 3250-3257, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34122832

RESUMO

Electron-acceptor small-molecules possessing a long exciton lifetime and a narrow energy band gap, opposing the energy gap law, are highly desirable for high-performance organic photovoltaics (OPVs) by realizing their efficient light-harvesting ability (LH), exciton diffusion (ED), and charge transfer (CT). Toward this goal, we designed an acceptor-donor-acceptor (A-D-A) type nonfullerene acceptor (NFA), TACIC, having an electron-donating, self-assembling two-dimensional (2D) nanographene unit, thienoazacoronene, at the center with electron-withdrawing groups at both ends. The TACIC film exhibited a narrow band gap (1.59 eV) with excellent LH. Surprisingly, the TACIC film showed an extremely long exciton lifetime (1.59 ns), suppressing undesirable nonradiative decay by its unique self-assembling behavior. When combined with a conjugated polymer donor, PBDB-T, slow ED and CT were observed (60 ps) with the excitation of TACIC owing to the large TACIC domain sizes. Nevertheless, the unusually high efficiencies of ED and CT (96% in total) were achieved by the long TACIC exciton lifetime. Additionally, unusual energy transfer (EnT) from the excited PBDB-T to TACIC was seen, demonstrating its dual LH role. The OPV device with PBDB-T and TACIC showed a high incident photon-to-current efficiency (IPCE) exceeding 70% at up to 710 nm and a power conversion efficiency of ∼10%. This result will open up avenues for a rational strategy of OPVs where LH, ED, and CT from the acceptor side as well as LH, EnT, ED, and CT from the donor side can be better designed by using 2D nanographene as a promising building block for high-performance A-D-A type NFAs.

6.
Chemphyschem ; 20(20): 2683-2688, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31077528

RESUMO

Recently, ternary blend polymer solar cells have attracted great attention to improve a short-circuit current density (JSC ) effectively, because complementary absorption bands can harvest the solar light over a wide wavelength range from visible to near-IR region. Interestingly, some ternary blend solar cells have shown improvements not only in JSC but also in fill factor (FF). Previously, we also reported that a ternary blend solar cell based on a low-bandgap polymer (PTB7-Th), a wide-bandgap polymer (PDCBT), and a fullerene derivative (PCBM) exhibited a higher FF than their binary analogues. Herein, we study charge transport in PTB7-Th/PDCBT/PCBM ternary blend films to address the origin of the improvement in FF. We found that hole polarons are located in PTB7-Th domains and their mobility is enhanced in the ternary blend film.

7.
ACS Nano ; 11(12): 12473-12481, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29148715

RESUMO

Rapid, long-range charge separation in polymer-fullerene organic solar cells (OSCs) enables electrons and holes to move beyond their Coulomb capture radius and overcome geminate recombination. Understanding the nature of charge generation and recombination mechanisms in efficient, nonfullerene-acceptor-based OSCs are critical to further improve device performance. Here we report charge dynamics in an OSC using a perylene diimide (PDI) dimer acceptor. We use transient absorption spectroscopy to track the time evolution of electroabsorption caused by the dipolar electric field generated between electron-hole pairs as they separate after ionization at the donor-acceptor interface. We show that charges separate rapidly (<1 ps) and that free charge carriers are generated very efficiently (∼90% quantum yield). However, in the PDI-based OSC, external charge extraction is impaired by faster nongeminate decay to the ground state and to lower-lying triplet states.

8.
Nat Commun ; 6: 10085, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626042

RESUMO

A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7-1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage.

9.
J Am Chem Soc ; 137(51): 15980-3, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26654295

RESUMO

Excited-state dynamics in poly[4,6-(dodecyl-thieno[3,4-b]thiophene-2-carboxylate)-alt-2,6-(4,8-dioctoxylbenzo[1,2-b:4,5-b]dithiophene)] (PTB1) was studied by transient absorption spectroscopy. Upon photoexcitation at 400 nm, an additional transient species is promptly generated along with singlet excitons and survives up to nanoseconds, while singlet excitons disappear completely. In order to assign the long-lived species, we measured transient absorption spectra over the wide spectral range from 900 to 2500 nm. As a result, we found that the long-lived species is ascribed not to polarons but to triplet excitons, which is formed through the ultrafast singlet fission (SF). We discuss the ultrafast SF mechanism in push-pull low-bandgap polymer PTB1 films on the basis of the excited-state dynamics under various excitation wavelengths and intensities.

10.
J Phys Chem Lett ; 6(17): 3417-28, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26269208

RESUMO

Singlet exciton diffusion plays a central role in the photovoltaic conversion in organic photovoltaics (OPVs). Upon light absorption, singlet excitons are promptly generated in organic materials instead of charge carriers because the dielectric constant (εr) is small (∼3-4), which is in sharp contrast to inorganic and perovskite solar cells. In order to convert to charge carriers, excitons need to diffuse into an interface between electron donor and acceptor materials before deactivating to the ground state. Therefore, fundamental understanding of exciton diffusion dynamics is one of the most important issues to further improve OPVs. We highlight recent leading studies in this field and describe several approaches for efficient exciton harvesting at the interface in OPVs.

11.
Adv Mater ; 27(39): 5868-74, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26310791

RESUMO

Ternary-blend polymer solar cells can be effectively improved by incorporating a heterostructured near-IR dye, which has a hexyl group compatible with the polymer and a benzyl group compatible with the fullerene. Because of the compatibility with both materials, the heterostructured dye can be loaded up to 15 wt% and hence can boost the photocurrent generation by 30%.

12.
Phys Chem Chem Phys ; 16(38): 20338-46, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24980903

RESUMO

Charge generation and recombination dynamics in a blend film of a crystalline low-bandgap polymer, poly[(4,4-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT), and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were studied by transient absorption spectroscopy. Upon photoexcitation of the PSBTBT absorption band at 800 nm, singlet excitons were promptly generated, and then rapidly converted into polarons in a few picoseconds. We found that there are two different polarons in PSBTBT: one is ascribed to polarons generated in the disorder phase and the other is ascribed to polarons in the crystalline phase. On a time scale of nanoseconds, ∼50% of polarons in the disorder phase recombined geminately to the ground state. On the other hand, such geminate recombination was negligible for polarons in the crystalline phase. As a result, the overall charge dissociation efficiency is as high as ∼75% for PSBTBT/PCBM blend films. On the basis of these analyses, we discuss the role of polymer crystallinity in the charge-carrier generation in organic solar cells.

13.
J Phys Chem Lett ; 5(2): 399-403, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26270718

RESUMO

Singlet exciton dynamics in crystalline domains of regioregular poly(3-hexylthiophene) (P3HT) films was studied by transient absorption spectroscopy. Upon the selective excitation of crystalline P3HT at the absorption edge, no red shift of the singlet exciton band was observed with an elapse of time, suggesting singlet exciton dynamics in relatively homogeneous P3HT crystalline domains without downhill relaxation in the energetic disorder. Even under such selective excitation conditions, the annihilation rate coefficient γ(t) was still dependent on time, γ(t) ∝ t(-1/2), which is attributed to anisotropic exciton diffusion in P3HT crystalline domains. From the annihilation rate coefficient, the singlet exciton diffusion coefficient D and exciton diffusion length LD in the crystalline domains were evaluated to be 7.9 × 10(-3) cm(2) s(-1) and 20 nm, respectively. The origin of the time-dependent exciton dynamics is discussed in terms of dimensionality.

14.
J Phys Chem A ; 117(33): 7776-85, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23905591

RESUMO

Formation dynamics of intramolecular excimer in dioxa[3.3](3,6)carbazolophane (CzOCz) was studied by time-resolved spectroscopic methods and computational calculations. In the ground state, the most stable conformer in CzOCz is the anti-conformation where two carbazole rings are in antiparallel alignment. No other isomers were observed even after the solution was heated up to 150 °C, although three characteristic isomers were found by the molecular mechanics calculation: the first is the anti-conformer, the second is the syn-conformer where two carbazole rings are stacked in the same direction, and the third is the int-conformer where two carbazole rings are aligned in an edge-to-face geometry. Because of the anti-conformation, the interchromophoric interaction in CzOCz is negligible in the ground state. Nonetheless, the intramolecular excimer in CzOCz was dynamically formed in an acetonitrile (MeCN) solution, indicating strong interchromophoric interaction and the isomerization from the anti- to syn-conformation in the excited state. The excimer formation in CzOCz is more efficient in polar solvents than in less polar solvents, suggesting the contribution of the charge transfer (CT) state to the excimer formation. The stabilization in the excited state is discussed in terms of molecular orbital interaction between two carbazole rings. The solvent-polarity-induced excimer formation is discussed in terms of the CT character in the int-conformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...