Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Res ; : 1-5, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236515

RESUMO

In this study, the effects of the degree of thermal denaturation of whey protein (WP) added to milk on the dissociation of κ-casein from casein micelles were investigated, since they are related to the strength of acid milk gel and its factors. Acid milk gels were prepared by heating thermally denatured WP isolate (WPI) and undenatured milk mixtures and treating them with glucono-δ-lactone as a coagulant. The strength of these gels was negatively correlated with the WPI denaturation degree and strongly positively correlated with the extent of κ-casein dissociation from casein micelles. This behavior was ascribed to the fact that α-lactalbumin (α-La) and ß-lactoglobulin (ß-Lg) contained in WPI denatured after heating and engaged in disulfide bond formation with each other. With an increase in the degree of denaturation and disulfide bond formation, the bonding between ß-lactoglobulin and κ-casein was suppressed to decrease the amount of κ-casein-WPI complexes. When ß-Lg forms SS bonds with α-La, the number of highly reactive, free SH groups decreases, which complicates the formation of SS bridges between ß-Lg and κ-casein. Thus, the denaturation degree of WPI largely determined the degree of κ-casein dissociation from casein micelles and, consequently, the strength of acid milk gels. Adding WP to milk increases the strength of acid milk gel, and it can be controlled by changing the degree of thermal denaturation of the WP. Furthermore, it was clarified for the first time that the dissociation of κ-casein from casein micelles influences this effect. Further studies are needed to elucidate the structural features of κ-casein-dissociated micelles.

2.
Nat Commun ; 11(1): 4079, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796936

RESUMO

DNA methylation is an epigenetic modification that specifies the basic state of pluripotent stem cells and regulates the developmental transition from stem cells to various cell types. In flowering plants, the shoot apical meristem (SAM) contains a pluripotent stem cell population which generates the aerial part of plants including the germ cells. Under appropriate conditions, the SAM undergoes a developmental transition from a leaf-forming vegetative SAM to an inflorescence- and flower-forming reproductive SAM. While SAM characteristics are largely altered in this transition, the complete picture of DNA methylation remains elusive. Here, by analyzing whole-genome DNA methylation of isolated rice SAMs in the vegetative and reproductive stages, we show that methylation at CHH sites is kept high, particularly at transposable elements (TEs), in the vegetative SAM relative to the differentiated leaf, and increases in the reproductive SAM via the RNA-dependent DNA methylation pathway. We also show that half of the TEs that were highly methylated in gametes had already undergone CHH hypermethylation in the SAM. Our results indicate that changes in DNA methylation begin in the SAM long before germ cell differentiation to protect the genome from harmful TEs.


Assuntos
Metilação de DNA , Meristema/crescimento & desenvolvimento , Meristema/genética , Oryza/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Elementos de DNA Transponíveis , Biologia do Desenvolvimento , Epigenômica , Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
3.
Plant J ; 82(2): 256-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25740115

RESUMO

Accumulating evidence indicates that the FLOWERING LOCUS T (FT) protein is the mobile floral signal known as florigen. A rice FT homolog, Heading date 3a (Hd3a), is transported from the phloem to shoot apical cells, where it interacts with 14-3-3 proteins and transcription factor OsFD1 to form a florigen activation complex (FAC) that activates a rice homolog of the floral identity gene APETALA1. Recent studies showed that florigen has roles in plant development beyond flowering; however, the exact nature of these roles is not well understood. It is not clear whether FT is transported to organs outside the shoot apex, and whether FAC formation is required for processes other than flowering. We show here that the Hd3a protein accumulates in axillary meristems to promote branching, and that FAC formation is required. Analysis of transgenic plants revealed that Hd3a promotes branching through lateral bud outgrowth. Hd3a protein produced in the phloem reached the axillary meristem in the lateral bud, and its transport was required for promotion of branching. Moreover, mutant Hd3a proteins defective in FAC formation but competent with respect to transport did not promote branching. Finally, we show that Hd3a promotes branching independently from strigolactone and FC1, a transcription factor that inhibits branching in rice. Together, these results suggest that Hd3a functions as a mobile signal for branching in rice.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Florígeno/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Oryza/genética , Proteínas de Plantas/genética
4.
Proc Natl Acad Sci U S A ; 112(8): E901-10, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675495

RESUMO

Floral induction is a crucial developmental step in higher plants. Florigen, a mobile floral activator that is synthesized in the leaf and transported to the shoot apex, was recently identified as a protein encoded by FLOWERING LOCUS T (FT) and its orthologs; the rice florigen is Heading date 3a (Hd3a) protein. The 14-3-3 proteins mediate the interaction of Hd3a with the transcription factor OsFD1 to form a ternary structure called the florigen activation complex on the promoter of OsMADS15, a rice APETALA1 ortholog. However, crucial information, including the spatiotemporal overlap among FT-like proteins and the components of florigen activation complex and downstream genes, remains unclear. Here, we confirm that Hd3a coexists, in the same regions of the rice shoot apex, with the other components of the florigen activation complex and its transcriptional targets. Unexpectedly, however, RNA-sequencing analysis of shoot apex from wild-type and RNA-interference plants depleted of florigen activity revealed that 4,379 transposable elements (TEs; 58% of all classifiable rice TEs) were expressed collectively in the vegetative and reproductive shoot apex. Furthermore, in the reproductive shoot apex, 214 TEs were silenced by florigen. Our results suggest a link between floral induction and regulation of TEs.


Assuntos
Elementos de DNA Transponíveis/genética , Flores/fisiologia , Inativação Gênica , Meristema/fisiologia , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Florígeno/farmacologia , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Inflorescência/efeitos dos fármacos , Inflorescência/metabolismo , Meristema/efeitos dos fármacos , Meristema/genética , Organogênese/efeitos dos fármacos , Oryza/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Transporte Proteico/efeitos dos fármacos , Reprodutibilidade dos Testes , Reprodução/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Nature ; 478(7367): 119-22, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21947007

RESUMO

Seasonal fluctuations in day length regulate important aspects of plant development such as the flowering transition or, in potato (Solanum tuberosum), the formation of tubers. Day length is sensed by the leaves, which produce a mobile signal transported to the shoot apex or underground stems to induce a flowering transition or, respectively, a tuberization transition. Work in Arabidopsis, tomato and rice (Oryza sativa) identified the mobile FLOWERING LOCUS T (FT) protein as a main component of the long-range 'florigen', or flowering hormone, signal. Here we show that expression of the Hd3a gene, the FT orthologue in rice, induces strict short-day potato types to tuberize in long days. Tuber induction is graft transmissible and the Hd3a-GFP protein is detected in the stolons of grafted plants, transport of the fusion protein thus correlating with tuber formation. We provide evidence showing that the potato floral and tuberization transitions are controlled by two different FT-like paralogues (StSP3D and StSP6A) that respond to independent environmental cues, and show that an autorelay mechanism involving CONSTANS modulates expression of the tuberization-control StSP6A gene.


Assuntos
Flores/fisiologia , Proteínas de Plantas/metabolismo , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/anatomia & histologia , Solanum tuberosum/fisiologia , Meio Ambiente , Flores/genética , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Luz , Fenótipo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/efeitos da radiação , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estações do Ano , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nature ; 476(7360): 332-5, 2011 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-21804566

RESUMO

'Florigen' was proposed 75 years ago to be synthesized in the leaf and transported to the shoot apex, where it induces flowering. Only recently have genetic and biochemical studies established that florigen is encoded by FLOWERING LOCUS T (FT), a gene that is universally conserved in higher plants. Nonetheless, the exact function of florigen during floral induction remains poorly understood and receptors for florigen have not been identified. Here we show that the rice FT homologue Hd3a interacts with 14-3-3 proteins in the apical cells of shoots, yielding a complex that translocates to the nucleus and binds to the Oryza sativa (Os)FD1 transcription factor, a rice homologue of Arabidopsis thaliana FD. The resultant ternary 'florigen activation complex' (FAC) induces transcription of OsMADS15, a homologue of A. thaliana APETALA1 (AP1), which leads to flowering. We have determined the 2.4 Å crystal structure of rice FAC, which provides a mechanistic basis for florigen function in flowering. Our results indicate that 14-3-3 proteins act as intracellular receptors for florigen in shoot apical cells, and offer new approaches to manipulate flowering in various crops and trees.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis , Flores/crescimento & desenvolvimento , Flores/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Ligação ao Cálcio/química , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/química , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotos de Planta/citologia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Cell Physiol ; 50(3): 429-38, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19179350

RESUMO

Hd3a and FT proteins have recently been proposed to act as florigens in rice and Arabidopsis, respectively; however, the molecular mechanisms of their function remain to be determined. In this study, we identified GF14c (a 14-3-3 protein) as an Hd3a-interacting protein in a yeast two-hybrid screen. In vitro and in vivo experiments, using a combination of pull-down assays and bimolecular fluorescence complementation, confirmed the interaction between Hd3a and GF14c. Functional analysis using either GF14c overexpression or knockout transgenic rice plants indicated that this interaction plays a role in the regulation of flowering. GF14c-overexpressing plants exhibited a delay in flowering and the knockout mutants displayed early flowering relative to the wild-type plants under short-day conditions. These results suggest that GF14c acts as a negative regulator of flowering by interacting with Hd3a. Since the 14-3-3 protein has been shown to interact with FT protein in tomato and Arabidopsis, our results in rice provide important findings about FT signaling in plants.


Assuntos
Proteínas 14-3-3/metabolismo , Flores/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas 14-3-3/genética , DNA Bacteriano/metabolismo , DNA de Plantas/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Biblioteca Gênica , Mutagênese Insercional , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Development ; 135(4): 767-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18223202

RESUMO

RICE FLOWERING LOCUS T 1 (RFT1/FT-L3) is the closest homologue of Heading date 3a (Hd3a), which is thought to encode a mobile flowering signal and promote floral transition under short-day (SD) conditions. RFT1 is located only 11.5 kb from Hd3a on chromosome 6. Although RFT1 RNAi plants flowered normally, double RFT1-Hd3a RNAi plants did not flower up to 300 days after sowing (DAS), indicating that Hd3a and RFT1 are essential for flowering in rice. RFT1 expression was very low in wild-type plants, but there was a marked increase in RFT1 expression by 70 DAS in Hd3a RNAi plants, which flowered 90 DAS. H3K9 acetylation around the transcription initiation site of the RFT1 locus had increased by 70 DAS but not at 35 DAS. In the absence of Hd3a and RFT1 expression, transcription of OsMADS14 and OsMADS15, two rice orthologues of Arabidopsis APETALA1, was strongly reduced, suggesting that they act downstream of Hd3a and RFT1. These results indicate that Hd3a and RFT1 act as floral activators under SD conditions, and that RFT1 expression is partly regulated by chromatin modification.


Assuntos
Flores/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Modelos Biológicos , Oryza/genética , Oryza/crescimento & desenvolvimento , Fotoperíodo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Interferência de RNA
10.
Science ; 316(5827): 1033-6, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17446351

RESUMO

Florigen, the mobile signal that moves from an induced leaf to the shoot apex and causes flowering, has eluded identification since it was first proposed 70 years ago. Understanding the nature of the mobile flowering signal would provide a key insight into the molecular mechanism of floral induction. Recent studies suggest that the Arabidopsis FLOWERING LOCUS T (FT) gene is a candidate for encoding florigen. We show that the protein encoded by Hd3a, a rice ortholog of FT, moves from the leaf to the shoot apical meristem and induces flowering in rice. These results suggest that the Hd3a protein may be the rice florigen.


Assuntos
Flores/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Luz , Meristema/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Periodicidade , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica
11.
Plant Cell ; 17(12): 3326-36, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16272430

RESUMO

A short exposure to light in the middle of the night causes inhibition of flowering in short-day plants. This phenomenon is called night break (NB) and has been used extensively as a tool to study the photoperiodic control of flowering for many years. However, at the molecular level, very little is known about this phenomenon. In rice (Oryza sativa), 10 min of light exposure in the middle of a 14-h night caused a clear delay in flowering. A single NB strongly suppressed the mRNA of Hd3a, a homolog of Arabidopsis thaliana FLOWERING LOCUS T (FT), whereas the mRNAs of OsGI and Hd1 were not affected. The NB effect on Hd3a mRNA was maximal in the middle of the 14-h night. The phyB mutation abolished the NB effect on flowering and Hd3a mRNA, indicating that the NB effect was mediated by phytochrome B. Because expression of the other FT-like genes was very low and not appreciably affected by NB, our results strongly suggest that the suppression of Hd3a mRNA is the principal cause of the NB effect on flowering in rice.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/fisiologia , Dados de Sequência Molecular , Oryza/genética , Oryza/crescimento & desenvolvimento , Fitocromo B/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , RNA Mensageiro/genética , Transcrição Gênica
12.
Nature ; 422(6933): 719-22, 2003 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-12700762

RESUMO

The photoperiodic control of flowering is one of the important developmental processes of plants because it is directly related to successful reproduction. Although the molecular genetic analysis of Arabidopsis thaliana, a long-day (LD) plant, has provided models to explain the control of flowering time in this species, very little is known about its molecular mechanisms for short-day (SD) plants. Here we show how the photoperiodic control of flowering is regulated in rice, a SD plant. Overexpression of OsGI, an orthologue of the Arabidopsis GIGANTEA (GI) gene in transgenic rice, caused late flowering under both SD and LD conditions. Expression of the rice orthologue of the Arabidopsis CONSTANS (CO) gene was increased in the transgenic rice, whereas expression of the rice orthologue of FLOWERING LOCUS T (FT) was suppressed. Our results indicate that three key regulatory genes for the photoperiodic control of flowering are conserved between Arabidopsis, a LD plant, and rice, a SD plant, but regulation of the FT gene by CO was reversed, resulting in the suppression of flowering in rice under LD conditions.


Assuntos
Flores/fisiologia , Luz , Oryza/fisiologia , Fotoperíodo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...