Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Relativ Gravit ; 54(1): 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221342

RESUMO

The science objectives of the LISA mission have been defined under the implicit assumption of a 4-years continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of ≈ 0.75 , which would reduce the effective span of usable data to 3 years. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 years of mission operations is recommended.

2.
Exp Astron (Dordr) ; 51(3): 1427-1440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720416

RESUMO

Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the ∼ 10 -103 Hz band of ground-based observatories and the ∼ 1 0 - 4 -10- 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( ∼ 1 0 2 -104 M ⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.

3.
Phys Rev Lett ; 126(10): 101105, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784163

RESUMO

GW190521 is the compact binary with the largest masses observed to date, with at least one black hole in the pair-instability gap. This event has also been claimed to be associated with an optical flare observed by the Zwicky Transient Facility in an active galactic nucleus (AGN), possibly due to the postmerger motion of the merger remnant in the AGN gaseous disk. The Laser Interferometer Space Antenna (LISA) may detect up to ten such gas-rich black-hole binaries months to years before their detection by Laser Interferometer Gravitational Wave Observatory or Virgo-like interferometers, localizing them in the sky within ≈1°^{2}. LISA will also measure directly deviations from purely vacuum and stationary waveforms arising from gas accretion, dynamical friction, and orbital motion around the AGN's massive black hole (acceleration, strong lensing, and Doppler modulation). LISA will therefore be crucial to enable us to point electromagnetic telescopes ahead of time toward this novel class of gas-rich sources, to gain direct insight on their physics, and to disentangle environmental effects from corrections to general relativity that may also appear in the waveforms at low frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...