Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(1): 230-236, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472089

RESUMO

The deposition of organic semiconductors (OSCs) using solution shearing deposition techniques is highly appealing for device implementation. However, when using high deposition speeds, it is necessary to use very concentrated OSC solutions. The OSCs based on the family of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have been shown to be excellent OSCs due to their high mobility and stability. However, their limited solubility hinders the processing of these materials at high speed. Here, we report the conditions to process alkylated DNTT and the S-shaped π-core derivative S-DNTT by bar-assisted meniscus shearing (BAMS) at high speed (i.e., 10 mm s-1). In all the cases, homogeneous thin films were successfully prepared, although we found that the gain in solubility achieved with the S-DNTT derivative strongly facilitated solution processing, achieving a field-effect mobility of 2.1 cm2 V-1 s-1, which is two orders of magnitude higher than the mobility found for the less soluble linear derivatives.

2.
J Mater Chem C Mater ; 9(22): 7186-7193, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34211720

RESUMO

Thin films of the organic semiconductor Ph-BTBT-10 and blends of this material with polystyrene have been deposited by a solution shearing technique at low (1 mm s-1) and high (10 mm s-1) coating velocities and implemented in organic field-effect transistors. Combined X-ray diffraction and electrical characterisation studies prove that the films coated at low speed are significantly anisotropic. The highest mobility is found along the coating direction, which corresponds to the crystallographic a-axis. In contrast, at high coating speed the films are crystallographically less ordered but with better thin film homogeneity and exhibit isotropic electrical characteristics. Best mobilities are found in films prepared at high coating speeds with the blended semiconductor. This work demonstrates the interplay between the crystal packing and thin film morphology and uniformity and their impact on the device performance.

3.
ACS Appl Mater Interfaces ; 13(26): 30902-30909, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156234

RESUMO

Molecular surfactants, which are based on a water-insoluble tail and a water-soluble head, are widely employed in many areas, such as surface coatings or for drug delivery, thanks to their capability to form micelles in solution or supramolecular structures at the solid/liquid interface. Electrolyte-gated organic field-effect transistors (EGOFETs) are highly sensitive to changes occurring at their electrolyte/gate electrode and electrolyte/organic semiconductor interfaces, and hence, they have been much explored in biosensing due to their inherent amplification properties. Here, we demonstrate that the EGOFETs and surfactants can provide mutual benefits to each other. EGOFETs can be a simple and complementary tool to study the aggregation behavior of cationic and anionic surfactants at low concentrations on a polarized metal surface. In this way, we have monitored the monolayer formation of cationic and anionic surfactants at the water/electrode interface with p-type and n-type devices, respectively. On the other hand, the operational stability of EGOFETs has been dramatically enhanced, thanks to the formation of a protective layer on top of the organic semiconductor by exposing it to a high concentration of a surfactant solution (above the critical micelle concentration). Stable performances were achieved for more than 10 and 2 h of continuous operation for p-type and n-type devices, respectively. Accordingly, this work points not only that EGOFETs can be applied to a wider range of applications beyond biosensing but also that these devices can effectively improve their long-term stability by simply treating them with a suitable surfactant.

4.
Chem Mater ; 33(4): 1455-1461, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33642680

RESUMO

The molecule 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) is an organic semiconductor with outstanding performance in thin-film transistors. The asymmetric shape of the molecule causes an unusual phase behavior, which is a result of a distinct difference in the molecular arrangement between the head-to-head stacking of the molecules versus head-to-tail stacking. Thin films are prepared at elevated temperatures by crystallization from melt under controlled cooling rates, thermal-gradient crystallization, and bar coating at elevated temperatures. The films are investigated using X-ray diffraction techniques. Unusual peak-broadening effects are found, which cannot be explained using standard models. The modeling of the diffraction patterns with a statistic variation of the molecules reveal that a specific type of molecular disorder is responsible for the observed peak-broadening phenomena: the known head-to-head stacking within the crystalline phase is disturbed by the statistic integration of reversed (or flipped) molecules. It is found that 7-15% of the molecules are integrated in a reversed way, and these fractions are correlated with cooling rates during the sample preparation procedure. Temperature-dependent in situ experiments reveal that the defects can be healed by approaching the transition from the crystalline state to the smectic E state at a temperature of 145 °C. This work identifies and quantifies a specific crystalline defect type within thin films of an asymmetric rodlike conjugated molecule, which is caused by the crystallization kinetics.

5.
Nat Commun ; 11(1): 2136, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358502

RESUMO

Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work we investigate the physical processes behind X-ray photoconversion employing bis-(triisopropylsilylethynyl)-pentacene thin-films deposited by bar-assisted meniscus shearing. The thin film coating speed and the use of bis-(triisopropylsilylethynyl)-pentacene:polystyrene blends are explored as tools to control and enhance the detection capability of the devices, by tuning the thin-film morphology and the carrier mobility. The so-obtained detectors reach a record sensitivity of 1.3 · 104 µC/Gy·cm2, the highest value reported for organic-based direct X-ray detectors and a very low minimum detectable dose rate of 35 µGy/s. Thus, the employment of organic large-area direct detectors for X-ray radiation in real-life applications can be foreseen.

6.
ACS Omega ; 3(2): 2329-2339, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503976

RESUMO

Organic semiconductors (OSCs) are promising materials for cost-effective production of electronic devices because they can be processed from solution employing high-throughput techniques. However, small-molecule OSCs are prone to structural modifications because of the presence of weak van der Waals intermolecular interactions. Hence, controlling the crystallization in these materials is pivotal to achieve high device reproducibility. In this perspective article, we focus on controlling polymorphism and morphology in small-molecule organic semiconducting thin films deposited by solution-shearing techniques compatible with roll-to-roll systems. Special attention is paid to the influence that the different experimental deposition parameters can have on thin films. Further, the main characterization techniques for thin-film structures are reviewed, highlighting the in situ characterization tools that can provide crucial insights into the crystallization mechanisms.

7.
RSC Adv ; 8(48): 27509-27515, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713682

RESUMO

Understanding the physics behind the operational mechanism of Electrolyte-Gated Organic Field-Effect Transistors (EGOFETs) is of paramount importance for the correct interpretation of the device response. Here, we report the systematic functionalization of the gate electrode of an EGOFET with self-assembled monolayers with a variety of dipolar moments showing that both the chemical nature and the monolayer density influence the electrical characteristics of the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...