Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(11): 319, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743395

RESUMO

Tuberose flowers (Calcutta Single variety) valued as ornamentals globally, have short shelf-lives of 8 days at 4 ± 1 °C and are therefore discarded post senescence. Previous investigations from our laboratory have established that a combination treatment using GRAS preservatives [(sucrose (4%) and CaCl2 (0.02%)]-cum-gamma-irradiation (0.02 kGy) could extend its shelf-life to 24 days, when stored at 4 ± 1 °C with concomitant enhancement in the content of its bioactive principle, viz. methyl eugenol. Supercritical carbon dioxide (SC-CO2) extract of the tuberose flower wastes post combination treatment therefore had a higher methyl eugenol content (4.11 ± 0.05 µg/g), vis-à-vis its non-treated counterpart (2.03 ± 0.03 µg/g), and thus significantly higher antioxidant and antimicrobial potencies (MIC values of 1.83 ± 0.02 mg/ml and 1.98 ± 0.03 mg/ml against S. aureus ATCC 25923 strain and MDR strain, respectively). The microencapsulated powder of the extract (MEp) obtained by spray drying was applied for healing of epidermal wounds created on New Zealand white rabbits, post skin irritancy test (wherein no clinical sign of toxicity, redness or swelling was observed). When MEp was applied, accelerated healing occurred which commenced on day 2 and was completed by day 6 vis-à-vis that of the control powder set (without extract) which showed no signs of wound healing. Therefore, the sensorially compromised-senesced tuberose flowers, a rich source of methyl eugenol, has been successfully valorized through utilization of the same in developing a novel topical antibiotic powder against potent skin pathogens.


Assuntos
Agave , Dióxido de Carbono , Animais , Coelhos , Pós , Staphylococcus aureus , Índia , Flores , Extratos Vegetais/farmacologia
2.
Recent Pat Biotechnol ; 15(3): 204-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34517793

RESUMO

BACKGROUND: 1,8 cineole-rich supercritical CO2 extract of small cardamom seeds of Alleppey green variety exhibiting prominent antioxidant property was microencapsulated and utilized in formulating an antioxidant-rich custard. However, the antioxidant potency of the prepared custard was not appreciable. To redress the phytochemical loss during custard preparation, custard using nanoliposomes was formulated. Patents related to 1,8 cineole-rich food products have been revised thoroughly. OBJECTIVE: The objective of the current study is to examine whether nanoencapsulationmediated entrapment of antioxidants is more effective in fortifying a dessert, namely custard, vis-à-vis microencapsulated (spray dried)-mediated enhancement of antioxidative potency in the same. METHODS: Our previous investigations have established that nanoliposome of 1,8 cineole- rich supercritical CO2 extract of small cardamom seeds effectively redresses type 2 diabetes and hypercholesterolemia. In the current investigation, this pre-characterized nanoliposome which exhibited appreciable in vitro and in vivo antioxidant efficacy has been utilized at varying concentrations for fortification of a custard. The designer custard samples have been characterized for their sensory and physicochemical properties, identification of the cardamom antioxidants therein and determination of the synergistic efficacy value of the identified antioxidants. RESULTS: The custard formulated with 0.3% nanoliposomes exhibited appreciable antioxidant potency in terms of DPPH radical scavenging activity (304.58±1.09 mg/ml) and reducing power (0.020±0.001 mg BHT/g custard), conferred by its total phenolic content (0.049±0.004 mg GAE/g custard). It also had relatively more stable textural attributes vis-à-vis the control sample (formulated with the non-encapsulated native extract). GCMS analysis of the nanoliposome-fortified custard confirmed retention of the spice antioxidants, namely1,8- cineole, α-terpinyl acetate, α-terpineol and linalool and its synergistic efficacy value being greater than unity, attested to the synergistic presence of the said antioxidants therein. The newly formulated custard retained more than 4.5 times of 1,8-cineole (5.05 mg/g custard) vis-à-vis the custard sample (1.12 mg/g custard) prepared with a microencapsulated (spray-dried) formulation of the extract. Additionally, the absence of heavy metals in the formulated custard confirmed it to be safe for human consumption. CONCLUSION: This is the first study on the application of nanoliposomes of spiceuticals in the formulation of a dessert, and more emphatically on use of a 'green' supercritical CO2 extract of spice antioxidants in fortification of a dessert to achieve antioxidant synergy.


Assuntos
Diabetes Mellitus Tipo 2 , Elettaria , Antioxidantes/farmacologia , Dióxido de Carbono , Suplementos Nutricionais , Humanos , Patentes como Assunto , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA