Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 469(1): 135-40, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-19944743

RESUMO

Ligands of NGF and GDNF families of neurotrophic factors have important functions in the development of the vertebrate peripheral nervous system (PNS). It has been established that they also play key roles in the regeneration of PNS. Expression patterns of NGF and GDNF family members and their receptors have mostly been analyzed during regeneration, and less during development of the PNS. We describe the expression of mRNAs encoding these neurotrophic factors and their receptors during development of rat sciatic nerve and in three modes of differentiation of cultured rat Schwann cells. Our results demonstrate specific expression patterns of NGF and GDNF family ligands and their receptors during differentiation of Schwann cells in vivo and in vitro.


Assuntos
Fator de Crescimento Neural/biossíntese , Receptores de Fator de Crescimento Neural/biossíntese , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Ratos , Nervo Isquiático/citologia , Nervo Isquiático/crescimento & desenvolvimento
2.
Reprod Biol Endocrinol ; 7: 150, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20034404

RESUMO

BACKGROUND: When the steroid hormones estrogen and progesterone bind to nuclear receptors, they have transcriptional impact on target genes in the human endometrium. These transcriptional changes have a critical function in preparing the endometrium for embryo implantation. METHODS: 382 genes were selected, differentially expressed in the receptive endometrium, to study their responsiveness of estrogen and progesterone. The endometrial cell lines HEC1A and RL95-2 were used as experimental models for the non-receptive and receptive endometrium, respectively. Putative targets for activated steroid hormone receptors were investigated by chromatin immunoprecipitation (ChIP) using receptor-specific antibodies. Promoter occupancy of the selected genes by steroid receptors was detected in ChIP-purified DNA by quantitative PCR (qPCR). Expression analysis by reverse transcriptase (RT)-PCR was used to further investigate hormone dependent mRNA expression regulation of a subset of genes. RESULTS: ChIP-qPCR analysis demonstrated that each steroid hormone receptor had distinct group of target genes in the endometrial cell lines. After estradiol treatment, expression of estrogen receptor target genes predominated in HEC1A cells (n = 137) compared to RL95-2 cells (n = 35). In contrast, expression of progesterone receptor target genes was higher in RL95-2 cells (n = 83) than in HEC1A cells (n = 7) after progesterone treatment. RT-PCR analysis of 20 genes demonstrated transcriptional changes after estradiol or progesterone treatment of the cell lines. CONCLUSIONS: Combined results from ChIP-qPCR and RT-PCR analysis showed different patterns of steroid hormone receptor occupancy at target genes, corresponding to activation or suppression of gene expression after hormone treatment of HEC1A and RL95-2 cell lines.


Assuntos
Endométrio/metabolismo , Marcação de Genes , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Linhagem Celular , Cromatina/química , Cromatina/genética , Interpretação Estatística de Dados , Feminino , Humanos , Imunoprecipitação , Técnicas In Vitro , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA