Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38829497

RESUMO

Selenium (Se) enhances the resistance of plants exposed to metal stress and can be used to lessen the impacts of toxic elements and to enhance the effectiveness of the plants used to clean up polluted sites. There is no information available about the optimum dose and form of Se to stimulate the camelthorn (Alhagi maurorum Medik) plant, which is one of the plants used in the phytostabilization of toxic elements. The impacts of selenate (Se-VI) and selenite (Se-IV) on the phytoremediation of toxic metals from loamy soils by camelthorn were investigated in a pot experiment. Se-VI and Se-IV were added to the soil at doses of 0, 5, and 10 mg Se kg-1 soil, and each treatment was repeated five times. Se-VI and Se-IV, significantly increased plant growth and nutrient uptake. The addition of Se, either from Se-VI or Se-IV, significantly increased the superoxide dismutase (SOD) and peroxidase (POD) enzymes, and the non-enzymatic antioxidant compounds, i.e., proline and phenols, compared to the control. The addition of Se strengthened the defense against metal stress, and Se-VI outperformed Se-IV in boosting camelthorn's resistance to hazardous metal contamination. Selenium increased the accumulation of metal in the root of camelthorn and reduced root-shoot transfer. The best technique to boost camelthorn plants' capacity to clean up metal-contaminated soils is to supplement them with selenium in the form of selenate at a concentration of 10 mg Se kg-1 soil.

2.
Int J Phytoremediation ; 25(12): 1558-1566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36740728

RESUMO

Quail bush [Atriplex lentiformis (Torr.) S. Wats] plants were used in removing 2, 4-dinitrophenol (DNP) from wastewater in a hydroponic experiment. The hydroponic system contained three doses of DNP, i.e., 0, 10, and 20 mg L-1. Quail bush plants were sprayed with 0.1 mM salicylic acid (SA) to study its role in resisting DNP toxicity. DNP significantly (p < 0.05) reduced plant growth. Exposure of A. lentiformis plants to 20 mg L-1 of DNP reduced the total chlorophyl and relative water content by 39 and 24%, respectively. SA improved the antioxidant defense in terms of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activities. SA alleviated DNP toxicity by enhancing the production of osmoprotectants, e.g.,proline, phenols, and carbohydrates. SA enhanced the removal efficiency of DNP and the highest removal efficiency (96%) was recorded in the plants sprayed with SA and grown on 10 mg L-1 of DNP. A. lentiformis is a halophytic plant that has good physiological characteristics to resist 2, 4-dinitrophenol toxicity in wastewaters and is qualified to purify water from these harmful compounds. Exogenous application of 0.1 mM SA increased the defense system in A. lentiformis against 2, 4-dinitrophenol toxicity and enhanced the removal efficiency.


2, 4-dinitrophenol inhibited the synthesis of photosynthetic pigments.Salicylic acid protects the vital bio-compounds in plant cells.Atriplex plants are able to remove (96%) of 2, 4-dinitrophenol from the wastewater.Atriplex plants have a strong antioxidant defense enable them to survive in wastewater.


Assuntos
Atriplex , Águas Residuárias , Ácido Salicílico/farmacologia , Biodegradação Ambiental , Dinitrofenóis/farmacologia , Água , Antioxidantes/farmacologia
3.
BMC Plant Biol ; 22(1): 559, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460955

RESUMO

BACKGROUND: A potential solution for recycling and reusing the massively produced sewage water (SW) is to irrigate certain plants instead of highly cost recycling treatment. Although the extensive and irrational application of SW may cause environmental pollution thus, continual monitoring of the redox status of the receiver plant and the feedback on its growth under application becomes an emergent instance. The impact of SW, along with well water (WW) irrigation of medicinal plant, Datura innoxia, was monitored by some physio-biochemical indices. RESULTS: The SW application amplified the growth, yield, minerals uptake, and quality of D. innoxia plants compared to the WW irrigated plants. The total chlorophyll, carotenoid, non-enzymatic antioxidants, viz. anthocyanin, flavonoids, phenolic compounds, and total alkaloids increased by 85, 38, 81, 50, 19, and 37%, respectively, above WW irrigated plants. The experiment terminated in enhanced leaf content of N, P, and K by 43, 118, and 48%, respectively. Moreover, stimulation of carbon and nitrogen metabolites in terms of proteins, soluble sugars, nitrate reductase (NR) activity, and nitric oxide (NO) content showed significant earliness in flowering time. The SW application improved not only Datura plants' quality but also soil quality. After four weeks of irrigation, the WW irrigated plants encountered nutrient deficiency-induced stress evidenced by the high level of proline, H2O2, and MDA as well as high enzyme capabilities. Application of SW for irrigation of D. innoxia plant showed the improvement of secondary metabolites regulating enzyme phenylalanine ammonia-lyase (PAL), restored proline content, and cell redox status reflecting high optimal condition for efficient cellular metabolism and performance along the experiment duration. CONCLUSIONS: These evidences approved the benefits of practicing SW to improve the yield and quality of D. innoxia and the feasibility of generalization on multipurpose plants grown in poor soil.


Assuntos
Datura , Areia , Solo , Esgotos , Peróxido de Hidrogênio , Água , Prolina
4.
BMC Plant Biol ; 22(1): 591, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526966

RESUMO

BACKGROUND: Sodium Dodecyl Sulfate (SDS) an anionic surfactant pollutant has emerged as a serious hazard to the aquatic and terrestrial environment. Due to physical and chemical methodological difficulties for SDS removal, phytoremediation techniques are efficient alternative strategies to tackle such adversities. Juncus acutus L. (J. acutus) is a pioneer wetland species that has been recently exploited for phytoremediation purposes. To our knowledge, the role of exogenous hydrogen peroxide (H2O2), in improving the phytoextraction of SDS has not been examined yet. In this study, pretreatment foliar spray of H2O2 (15 mM) combined with two levels of SDS (50 and 100 ppm) in water culture was evaluated to remove SDS contamination and add value to the phytoremediation process. RESULTS: The outcomes revealed that J. acutus has considerable translocation and bioaccumulation abilities for SDS and can be utilized as an appropriate hyperaccumulator in SDS-contaminated sites. However, the involvement of H2O2 extended phytoremediation capacity and successive removal of SDS. H2O2 significantly assisted in increasing SDS remediation via more accumulation in J. acutus tissues by 29.9 and 112.4% and decreasing SDS concentration in culture media by 33.3 and 27.3% at 50 and 100 ppm SDS, respectively. Bioaccumulation factor (BCF) increased by 13.8 and 13.2%, while translocation factor (TCF) positively maximized by 82.4 and 76.2% by H2O2 application at 50 and 100 ppm SDS, respectively. H2O2 pretreatment could drive the decline in biochemical attributes in SDS-affected plants by modulating stress tolerance indices, pigments, water relations, proline content, enzymatic activities, and further, reduced oxidative stress in terms of electrolyte leakage, cellular H2O2, malondialdehyde (MDA) accumulation. CONCLUSIONS: H2O2 could play a potential role in maximizing phytoremediation capacity of SDS by J. acutus in polluted sites.


Assuntos
Peróxido de Hidrogênio , Áreas Alagadas , Biodegradação Ambiental , Dodecilsulfato de Sódio , Água
5.
Biology (Basel) ; 11(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009800

RESUMO

Pot trials were performed to explore the impacts of seed priming (SPr) plus leaf treatment (LTr) with trans-zeatin-type cytokinin (tZck; 0.05 mM) and silymarin (Sim; 0.5 mM) on growth, yield, physio-biochemical responses, and antioxidant defense systems in Cd-stressed wheat. tZck + Sim applied as SPr + LTr was more effective than individual treatments, and the impacts were more pronounced under stress conditions. Cd stress (0.6 mM) severely declined growth and yield traits, and photosynthesis efficiency (pigment contents, instantaneous carboxylation efficiency, and photochemical activity) compared to the control. These negative impacts coincided with increased levels of Cd2+, O2•- (superoxide), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and EL (electrolyte leakage). Non-enzymatic and enzymatic antioxidant activities, and tZck and Sim contents were also increased. However, tZck + Sim increased photosynthesis efficiency, and further boosted antioxidant activities, and contents of tZck and Sim, while minimizing Cd2+ levels in roots, leaves, and grains. The levels of O2•-, H2O2, MDA, and EL were also minimized, reflecting positively on growth and productivity. tZck + Sim applied as SPr + LTr was highly effective in promoting antioxidants and photosynthesis machineries, minimizing oxidative stress biomarkers and Cd2+ levels, boosting tolerance to Cd stress, and improving wheat productivity under Cd stress.

6.
Plants (Basel) ; 11(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567261

RESUMO

Water deficit stress is one of the major constraints for commercial agriculture, as it disturbs the metabolic processes in plant. Identification of carbon and nitrogen receptors that act on drought resistance helps in breeding for drought resistance varieties. Zn fertilizer can regulate multiple antioxidant defense systems at the transcriptional level in response to drought. Two field experiments were conducted in 2018-2019 and 2019-2020 seasons to explore the effectiveness of foliar application of zinc oxide on soluble sugar, soluble proteins, and free amino acids under normal irrigation and drought-stressed environments. Three Egyptian wheat cultivars (Triticum aestivum L.) were used. The experimental design was split-plot in RCBD with three replications, applying zinc oxide levels to the whole plot and the split plots. Leaf samples were taken for analysis before anthesis, at anthesis, and after anthesis. Application of Zn increased soluble sugars. However, the free amino acids were higher under irrigation, reached the maximum at anthesis, and decreased sharply after 2 weeks from anthesis. The ranking of cultivars for the three metabolites differed according to plant stage, reflecting the response to Zn and years. Correlations between metabolites according to Zn were positive. The findings suggest the potential of foliar application of Zn to alleviate drought stress.

7.
Plants (Basel) ; 10(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685988

RESUMO

This study aimed to use organic fertilizers, e.g., compost and manures, and a halophytic plant [wavy-leaved saltbush (Atriplex undulata)] to remediate an agricultural soil polluted with toxic elements. Compost or manure (1% w/w) was added to a polluted soil in a pot trial. The application of the organic fertilizer, whether compost or manure, led to a significant improvement in the growth of the tested plant. From the physiological point of view, the application of organic fertilizers to polluted soil significantly increased the content of chlorophyll, carotenoid, and proline and, furthermore, led to a clear decrease in malondialdehyde (MDA) in the plant leaves. The highest significant values of organic carbon in the polluted soil (SOC) and cation exchange capacity (CEC) were found for the soil amended by compost and planted with wavy-leaved saltbush. Manure significantly reduced the soil pH to 7.52. Compost significantly decreased Zn, Cu, Cd, and Pb availability by 19, 8, 12, and 13%, respectively, compared to the control. On the other hand, manure increased Zn, Cu, Cd, and Pb availability by 8, 15, 18, and 14%, respectively. Compost and manure reduced the bioconcentration factor (BCF) and translocation factor (TF) of Cd and Pb. Compost was more effective in increasing the phytostabilization of toxic metals by wavy-leaved saltbush plants compared to manure. The results of the current study confirm that the application of non-decomposed organic fertilizers to polluted soils increases the risk of pollution of the ecosystem with toxic elements. The cultivation of contaminated soils with halophytic plants with the addition of aged organic materials, e. g., compost, is an effective strategy to reduce the spreading of toxic metals in the ecosystem, thus mitigating their introduction into the food chain.

8.
Heliyon ; 6(6): e04173, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577564

RESUMO

Centaurea glomerata Vahl is an annual, monoecious and herbaceous member of Asteraceae, found in some localities of different topographic features/habitat conditions along the Mediterranean coastal region of Egypt. This study aimed to investigate some environmental gradients including edaphic and climate criteria on morphological, reproductive traits as well as phenolic and flavonoid metabolites in this species. Three distinct populations were selected. Two of them were located in coastal sand dunes (found in Rosetta region in Egypt); one was located on flat sand dunes, whereas the other grown on sloping ones. Meanwhile, the third population was represented in the rocky hillside of Burg El Arab region. The population detected in the sloping sand dunes showed best morphological and reproductive features, whilst the opposite was true for that represented on the rocky hillside. Moreover, the free phenolic and flavonoid compounds prevailed in the later. The meteorological data revealed that the rocky hillside received relatively lower minimum temperature and higher solar irradiance, while the sand dunes of Rosetta showed more warmer conditions. Light intensity and wind speed were reduced on the sloping sand dunes. The Canonical Correspondence Analysis (CCA) exhibited a clear correlation between most of metabolites detected and the population found on the rocky hillside along with higher solar irradiance prevails. The morpho-reproductive traits were related to climatic gradients and some soil criteria. These results revealed that the changes in micro-topography, that may lead to change in soil and climate variables, is the most important environmental gradient that controls the morphological and biochemical features of C. glomerata. Solar irradiance and/or light intensity are key factors playing a role influencing the measured traits of this species. These findings suggest that accumulation of secondary metabolites could be a biochemical strategy and an adaptational criterion for such species under stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...