Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672247

RESUMO

Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination. Among these interacting proteins, we identified novel ciliary cargo proteins of PDE6D, including FAM219A, serine/threonine-protein kinase NIM1 (NIM1K), and ubiquitin-like protein 3 (UBL3). We show that NIM1K and UBL3 localize inside the cilium in a prenylation-dependent manner. Furthermore, UBL3 also localizes in vesicle-like structures around the base of the cilium. Through affinity proteomics of UBL3, we confirmed its strong interaction with PDE6D and its association with proteins that regulate small extracellular vesicles (sEVs) and ciliogenesis. Moreover, we show that UBL3 localizes in specific photoreceptor cilium compartments in a prenylation-dependent manner. Therefore, we propose that UBL3 may play a role in the sorting of proteins towards the photoreceptor outer segment, further explaining the development of PDE6D-associated retinal degeneration.


Assuntos
Cílios , Degeneração Retiniana , Humanos , Animais , Camundongos , Cílios/metabolismo , Degeneração Retiniana/metabolismo , Proteínas/metabolismo , Retina/metabolismo , Transporte Proteico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo
2.
J Cell Sci ; 123(Pt 12): 2035-44, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20501700

RESUMO

Actin-based myosin motors have a pivotal role in intracellular trafficking in eukaryotic cells. The parasitic protozoan organism Leishmania expresses a novel class of myosin, myosin XXI (Myo21), which is preferentially localized at the proximal region of the flagellum. However, its function in this organism remains largely unknown. Here, we show that Myo21 interacts with actin, and its expression is dependent of the growth stage. We further reveal that depletion of Myo21 levels results in impairment of the flagellar assembly and intracellular trafficking. These defects are, however, reversed by episomal complementation. Additionally, it is shown that deletion of the Myo21 gene leads to generation of ploidy, suggesting an essential role of Myo21 in survival of Leishmania cells. Together, these results indicate that actin-dependent trafficking activity of Myo21 is essentially required during assembly of the Leishmania flagellum.


Assuntos
Flagelos/metabolismo , Leishmania/metabolismo , Miosinas/metabolismo , Proteínas de Protozoários/metabolismo , Actinas/genética , Actinas/metabolismo , Flagelos/genética , Leishmania/genética , Miosinas/genética , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...