Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Genome Biol ; 24(1): 187, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582787

RESUMO

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , Demografia
3.
Dev Neurobiol ; 83(5-6): 127-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37246363

RESUMO

Sheep with naturally occurring CLN5 and CLN6 forms of neuronal ceroid lipofuscinoses (Batten disease) share the key clinical features of the human disease and represent an ideal model system in which the clinical efficacy of gene therapies is developed and test. However, it was first important to characterize the neuropathological changes that occur with disease progression in affected sheep. This study compared neurodegeneration, neuroinflammation, and lysosomal storage accumulation in CLN5 affected Borderdale, CLN6 affected South Hampshire, and Merino sheep brains from birth to end-stage disease at ≤24 months of age. Despite very different gene products, mutations, and subcellular localizations, the pathogenic cascade was remarkably similar for all three disease models. Glial activation was present at birth in affected sheep and preceded neuronal loss, with both spreading from the visual and parieto-occipital cortices most prominently associated with clinical symptoms to the entire cortical mantle by end-stage disease. In contrast, the subcortical regions were less involved, yet lysosomal storage followed a near-linear increase across the diseased sheep brain with age. Correlation of these neuropathological changes with published clinical data identified three potential therapeutic windows in affected sheep-presymptomatic (3 months), early symptomatic (6 months), and a later symptomatic disease stage (9 months of age)-beyond which the extensive depletion of neurons was likely to diminish any chance of therapeutic benefit. This comprehensive natural history of the neuropathological changes in ovine CLN5 and CLN6 disease will be integral in determining what impact treatment has at each of these disease stages.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Ovinos , Animais , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/veterinária , Encéfalo/patologia , Neurônios/patologia , Córtex Cerebral/patologia , Mutação , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana
6.
PLoS One ; 15(9): e0238697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970694

RESUMO

Niemann-Pick type C disease is a lysosomal storage disease affecting primarily the nervous system that results in premature death. Here we present the first report and investigation of Niemann-Pick type C disease in Australian Angus/Angus-cross calves. After a preliminary diagnosis of Niemann-Pick type C, samples from two affected calves and two obligate carriers were analysed using single nucleotide polymorphism genotyping and homozygosity mapping, and NPC1 was considered as a positional candidate gene. A likely causal missense variant on chromosome 24 in the NPC1 gene (NM_174758.2:c.2969C>G) was identified by Sanger sequencing of cDNA. SIFT analysis, protein alignment and protein modelling predicted the variant to be deleterious to protein function. Segregation of the variant with disease was confirmed in two additional affected calves and two obligate carrier dams. Genotyping of 403 animals from the original herd identified an estimated allele frequency of 3.5%. The Niemann-Pick type C phenotype was additionally confirmed via biochemical analysis of Lysotracker Green, cholesterol, sphingosine and glycosphingolipids in fibroblast cell cultures originating from two affected calves. The identification of a novel missense variant for Niemann-Pick type C disease in Angus/Angus-cross cattle will enable improved breeding and management of this disease in at-risk populations. The results from this study offer a unique opportunity to further the knowledge of human Niemann-Pick type C disease through the potential availability of a bovine model of disease.


Assuntos
Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Células Cultivadas , Toxina da Cólera/metabolismo , Colesterol/metabolismo , DNA Complementar/genética , Modelos Animais de Doenças , Fibroblastos/patologia , Gangliosídeo G(M1)/metabolismo , Homozigoto , Mutação/genética , Proteína C1 de Niemann-Pick/química , Proteína C1 de Niemann-Pick/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
BMC Genomics ; 18(1): 565, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28750625

RESUMO

BACKGROUND: To date, genome-scale analyses in the domestic horse have been limited by suboptimal single nucleotide polymorphism (SNP) density and uneven genomic coverage of the current SNP genotyping arrays. The recent availability of whole genome sequences has created the opportunity to develop a next generation, high-density equine SNP array. RESULTS: Using whole genome sequence from 153 individuals representing 24 distinct breeds collated by the equine genomics community, we cataloged over 23 million de novo discovered genetic variants. Leveraging genotype data from individuals with both whole genome sequence, and genotypes from lower-density, legacy SNP arrays, a subset of ~5 million high-quality, high-density array candidate SNPs were selected based on breed representation and uniform spacing across the genome. Considering probe design recommendations from a commercial vendor (Affymetrix, now Thermo Fisher Scientific) a set of ~2 million SNPs were selected for a next-generation high-density SNP chip (MNEc2M). Genotype data were generated using the MNEc2M array from a cohort of 332 horses from 20 breeds and a lower-density array, consisting of ~670 thousand SNPs (MNEc670k), was designed for genotype imputation. CONCLUSIONS: Here, we document the steps taken to design both the MNEc2M and MNEc670k arrays, report genomic and technical properties of these genotyping platforms, and demonstrate the imputation capabilities of these tools for the domestic horse.


Assuntos
Técnicas de Genotipagem/métodos , Cavalos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Animais , Frequência do Gene , Técnicas de Genotipagem/normas , Desequilíbrio de Ligação , Análise de Sequência com Séries de Oligonucleotídeos/normas , Padrões de Referência , Sequenciamento Completo do Genoma
9.
Appl Anim Behav Sci ; 175: 32-40, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26949278

RESUMO

Neuronal ceroid lipofuscinoses (NCL) is an inherited neurodegenerative disorder in children. Presently there is no effective treatment and the disorder is lethal. NCL occur in a variety of non-human species including sheep, which are recognised as valuable large animal models for NCL. This experiment investigated the progressive postural, behavioural and liveweight changes in NCL-affected lambs, to establish practical, non-invasive biomarkers of disease progression for future preclinical trials in a CLN6 Merino sheep model. A flock of eight lambs at pasture was studied, with the observer blind to the disorder status. Three genotypes were compared: homozygous affected NCL; n = 4), clinically normal heterozygous (Carrier; n = 2) and homozygous normal (non-carrier control (Normal); n = 2). Direct observation during daylight and continuous accelerometer measurements over 72 h were used to quantify lamb posture and behaviour in 11 sessions between 26-60 weeks of age, conducted at 3-5 week intervals. There was a Genotype (G) × Age (A) interaction (P = 0.001) for liveweight of the lambs in the experiment, with NCL, Carrier and Normal lambs gaining 11.8, 16.5 and 23.4 kg, respectively, between 26 and 60 weeks of age. G×A interactions were also found for walking behaviour (means for NCL, Carrier and Normal genotype groups at 26 and 60 weeks, were 1.7 and 7.9%, 3.3 and 3.1%, and 2.5 and 1.9% of observations, P = 0.008) and a composite variable of key behaviours identified in the principal components analysis (P < 0.001), with mean values for NCL lambs increasing three-fold compared to non-affected lambs as age increased. Similarly, NCL lambs became less responsive to visual and auditory stimuli as they aged. Mean responsiveness scores (out of 3) to visual stimuli for the NCL, Carrier and Normal genotypes at 26 and 60 weeks of age were 2.7 and 1.4, 2.8 and 2.9, and 3.0 and 3.0, respectively (G × A, P < 0.001). Changes in response to auditory stimuli were similar to visual stimuli. NCL lambs took more (P = 0.015) steps per 24 h than Carrier and Normal genotype lambs, but there was no G × A interaction. At 26 and 60 weeks of age respectively, NCL lambs took 2724 and 4121 steps per 24 h, compared to Carrier (1708 and 3105 steps) and Normal genotype lambs (2109 and 3506 steps). NCL lambs also performed less (P = 0.018) grazing behaviour than Carrier and Normal genotype lambs (66.5, 72.3 and 72.5% of observations for NCL, Carrier and Normal lambs, respectively). A number of behavioural changes identified in the experiment could form the basis for a protocol for monitoring and evaluation of disease progression.

10.
Biochim Biophys Acta ; 1852(10 Pt B): 2279-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26073432

RESUMO

Studies on naturally occurring New Zealand and Australian ovine models of the neuronal ceroid-lipofuscinoses (Batten disease, NCLs) have greatly aided our understanding of these diseases. Close collaborations between the New Zealand groups at Lincoln University and the University of Otago, Dunedin, and a group at the University of Sydney, Australia, led to the formation of BARN, the Batten Animal Research Network. This review focusses on presentations at the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease), recent relevant background work, and previews of work in preparation for publication. Themes include CLN5 and CLN6 neuronal cell culture studies, studies on tissues from affected and control animals and whole animal in vivo studies. Topics include the effect of a CLN6 mutation on endoplasmic reticulum proteins, lysosomal function and the interactions of CLN6 with other lysosomal activities and trafficking, scoping gene-based therapies, a molecular dissection of neuroinflammation, identification of differentially expressed genes in brain tissue, an attempted therapy with an anti-inflammatory drug in vivo and work towards gene therapy in ovine models of the NCLs. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".

11.
Acta Neuropathol Commun ; 2: 25, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24581221

RESUMO

BACKGROUND: Aberrant biometal metabolism is a key feature of neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Metal modulating compounds are promising therapeutics for neurodegeneration, but their mechanism of action remains poorly understood. Neuronal ceroid lipofuscinoses (NCLs), caused by mutations in CLN genes, are fatal childhood neurodegenerative lysosomal storage diseases without a cure. We previously showed biometal accumulation in ovine and murine models of the CLN6 variant NCL, but the mechanism is unknown. This study extended the concept that alteration of biometal functions is involved in pathology in these disorders, and investigated molecular mechanisms underlying impaired biometal trafficking in CLN6 disease. RESULTS: We observed significant region-specific biometal accumulation and deregulation of metal trafficking pathways prior to disease onset in CLN6 affected sheep. Substantial progressive loss of the ER/Golgi-resident Zn transporter, Zip7, which colocalized with the disease-associated protein, CLN6, may contribute to the subcellular deregulation of biometal homeostasis in NCLs. Importantly, the metal-complex, ZnII(atsm), induced Zip7 upregulation, promoted Zn redistribution and restored Zn-dependent functions in primary mouse Cln6 deficient neurons and astrocytes. CONCLUSIONS: This study demonstrates the central role of the metal transporter, Zip7, in the aberrant biometal metabolism of CLN6 variants of NCL and further highlights the key contribution of deregulated biometal trafficking to the pathology of neurodegenerative diseases. Importantly, our results suggest that ZnII(atsm) may be a candidate for therapeutic trials for NCLs.


Assuntos
Transporte Biológico/genética , Proteínas de Transporte de Cátions/deficiência , Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Regulação para Cima/genética , Fatores Etários , Fosfatase Alcalina/metabolismo , Animais , Astrócitos/enzimologia , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Embrião de Mamíferos , Homeostase/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Doenças Neurodegenerativas/genética , Ovinos , Tropomiosina/farmacologia , Regulação para Cima/efeitos dos fármacos , Zinco/farmacologia
12.
PLoS One ; 8(3): e58644, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516525

RESUMO

Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.


Assuntos
Manganês/metabolismo , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Transdução de Sinais , Sinapses/metabolismo , Zinco/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Metalotioneína/metabolismo , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ovinos
13.
PLoS One ; 8(2): e55434, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408978

RESUMO

Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3ß, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.


Assuntos
Íntrons , Peptidil Dipeptidase A/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , DNA Complementar/genética , Cavalos , Humanos , Funções Verossimilhança , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
14.
Biochim Biophys Acta ; 1832(11): 1842-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23338040

RESUMO

Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Animais , Humanos
15.
BMC Genet ; 13: 99, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23153285

RESUMO

BACKGROUND: About 9% of the offspring of a clinically healthy Piétrain boar named 'Campus' showed a progressive postural tremor called Campus syndrome (CPS). Extensive backcross experiments suggested a dominant mode of inheritance, and the founder boar was believed to be a gonadal mosaic. A genome-scan mapped the disease-causing mutation to an 8 cM region of porcine chromosome 7 containing the MHY7 gene. Human distal myopathy type 1 (MPD1), a disease partially resembling CPS in pigs, has been associated with mutations in the MYH7 gene. RESULTS: The porcine MYH7 gene structure was predicted based on porcine reference genome sequence, porcine mRNA, and in comparison to the human ortholog. The gene structure was highly conserved with the exception of the first exon. Mutation analysis of a contiguous genomic interval of more than 22 kb spanning the complete MYH7 gene revealed an in-frame insertion within exon 30 of MYH7 (c.4320_4321insCCCGCC) which was perfectly associated with the disease phenotype and confirmed the dominant inheritance. The mutation is predicted to insert two amino acids (p.Ala1440_Ala1441insProAla) in a very highly conserved region of the myosin tail. The boar 'Campus' was shown to be a germline and somatic mosaic as assessed by the presence of the mutant allele in seven different organs. CONCLUSION: This study illustrates the usefulness of recently established genomic resources in pigs. We have identified a spontaneous mutation in MYH7 as the causative mutation for CPS. This paper describes the first case of a disorder caused by a naturally occurring mutation in the MYH7 gene of a non-human mammalian species. Our study confirms the previous classification as a primary myopathy and provides a defined large animal model for human MPD1. We provide evidence that the CPS mutation occurred during the early development of the boar 'Campus'. Therefore, this study provides an example of germline mosaicism with an asymptomatic founder.


Assuntos
Mutação em Linhagem Germinativa , Doenças Musculares/genética , Cadeias Pesadas de Miosina/genética , Sequência de Aminoácidos , Animais , Éxons , Humanos , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Suínos
16.
PLoS One ; 7(6): e39620, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761846

RESUMO

Canine Hip Dysplasia (CHD) is a common, painful and debilitating orthopaedic disorder of dogs with a partly genetic, multifactorial aetiology. Worldwide, potential breeding dogs are evaluated for CHD using radiographically based screening schemes such as the nine ordinally-scored British Veterinary Association Hip Traits (BVAHTs). The effectiveness of selective breeding based on screening results requires that a significant proportion of the phenotypic variation is caused by the presence of favourable alleles segregating in the population. This proportion, heritability, was measured in a cohort of 13,124 Australian German Shepherd Dogs born between 1976 and 2005, displaying phenotypic variation for BVAHTs, using ordinal, linear and binary mixed models fitted by a Restricted Maximum Likelihood method. Heritability estimates for the nine BVAHTs ranged from 0.14-0.24 (ordinal models), 0.14-0.25 (linear models) and 0.12-0.40 (binary models). Heritability for the summed BVAHT phenotype was 0.30 ± 0.02. The presence of heritable variation demonstrates that selection based on BVAHTs has the potential to improve BVAHT scores in the population. Assuming a genetic correlation between BVAHT scores and CHD-related pain and dysfunction, the welfare of Australian German Shepherds can be improved by continuing to consider BVAHT scores in the selection of breeding dogs, but that as heritability values are only moderate in magnitude the accuracy, and effectiveness, of selection could be improved by the use of Estimated Breeding Values in preference to solely phenotype based selection of breeding animals.


Assuntos
Displasia Pélvica Canina/diagnóstico por imagem , Displasia Pélvica Canina/genética , Linhagem , Fenótipo , Alelos , Animais , Austrália , Cruzamento , Cães , Feminino , Masculino , Modelos Teóricos , Radiografia
17.
Mol Cell Probes ; 26(6): 259-62, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22374219

RESUMO

Two clinically healthy mature Pakistani Bos indicus × Bos taurus cattle were genotyped as homozygous affected for the lethal immunodeficiency disorder bovine leukocyte adhesion deficiency (BLAD) using previously described PCR-RFLP based DNA tests which was confirmed by sequencing. Sequencing of Bos taurus and B. indicus × B. taurus genomic DNA surrounding the disease causing mutation (c.383A > G) in the ITGB2 gene identified numerous variations in exonic and intronic regions within and between species, including substantial variation in primer annealing sites for three PCR-RFLP tests for one of the B. indicus allelic variants. These variations in the primer annealing sites resulted in a null allele in the DNA tests causing the misdiagnosis of some heterozygous B. taurus × B. indicus cattle to be classified as homozygous affected. New primers were designed and a modified test was developed which simultaneously identified the disease mutation and the Pakistani B. indicus allelic variant associated with the null allele in the previous test.


Assuntos
Doenças dos Bovinos/genética , Testes Genéticos , Síndrome da Aderência Leucocítica Deficitária/veterinária , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Sequência de Bases , Antígenos CD18/genética , Bovinos , Doenças dos Bovinos/diagnóstico , Estudos de Associação Genética , Síndrome da Aderência Leucocítica Deficitária/diagnóstico , Síndrome da Aderência Leucocítica Deficitária/genética , Masculino , Técnicas de Diagnóstico Molecular , Dados de Sequência Molecular , Paquistão , Análise de Sequência de DNA
18.
Genet Sel Evol ; 42: 36, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20846385

RESUMO

An (Awassi × Merino) × Merino single-sire backcross family with 165 male offspring was used to map quantitative trait loci (QTL) for body composition traits on a framework map of 189 microsatellite loci across all autosomes. Two cohorts were created from the experimental progeny to represent alternative maturity classes for body composition assessment. Animals were raised under paddock conditions prior to entering the feedlot for a 90-day fattening phase. Body composition traits were derived in vivo at the end of the experiment prior to slaughter at 2 (cohort 1) and 3.5 (cohort 2) years of age, using computed tomography. Image analysis was used to gain accurate predictions for 13 traits describing major fat depots, lean muscle, bone, body proportions and body weight which were used for single- and two-QTL mapping analysis. Using a maximum-likelihood approach, three highly significant (LOD ≥ 3), 15 significant (LOD ≥ 2), and 11 suggestive QTL (1.7 ≤ LOD < 2) were detected on eleven chromosomes. Regression analysis confirmed 28 of these QTL and an additional 17 suggestive (P < 0.1) and two significant (P < 0.05) QTL were identified using this method. QTL with pleiotropic effects for two or more tissues were identified on chromosomes 1, 6, 10, 14, 16 and 23. No tissue-specific QTL were identified.A meta-assembly of ovine QTL for carcass traits from this study and public domain sources was performed and compared with a corresponding bovine meta-assembly. The assembly demonstrated QTL with effects on carcass composition in homologous regions on OAR1, 2, 6 and 21.


Assuntos
Bovinos/genética , Mapeamento Cromossômico/métodos , Carne/análise , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Carneiro Doméstico/genética , Tomografia Computadorizada por Raios X , Animais , Peso Corporal/genética , Osso e Ossos/anatomia & histologia , Genoma/genética , Modelos Lineares , Modelos Genéticos , Músculos/anatomia & histologia , Fenótipo , Tela Subcutânea/anatomia & histologia
20.
Neurobiol Dis ; 29(2): 306-15, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17988881

RESUMO

Batten disease (neuronal ceroid lipofuscinoses, NCLs) are a group of inherited childhood diseases that result in severe brain atrophy, blindness and seizures, leading to premature death. To date, eight different genes have been identified, each associated with a different form. Linkage analysis indicated a CLN5 form in a colony of affected New Zealand Borderdale sheep. Sequencing studies established the disease-causing mutation to be a substitution at a consensus splice site (c.571+1G>A), leading to the excision of exon 3 and a truncated putative protein. A molecular diagnostic test has been developed based on the excision of exon 3. Sequence alignments support the gene product being a soluble lysosomal protein. Western blotting of isolated storage bodies indicates the specific storage of subunit c of mitochondrial ATP synthase. This flock is being expanded as a large animal model for mechanistic studies and trial therapies.


Assuntos
Éxons/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Mutação Puntual , Animais , Análise Mutacional de DNA/métodos , Modelos Animais de Doenças , Ligação Genética , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/ultraestrutura , Leucócitos/patologia , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Doenças dos Ovinos , Carneiro Doméstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...