Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 64(2): 248-256, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27543207

RESUMO

The arctic phytoplankton spring bloom, which is often diatom-dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample-specific FST ) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE  = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample-specific FST . On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population.


Assuntos
Biomassa , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Estações do Ano , Análise de Variância , Regiões Árticas , Biodiversidade , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/isolamento & purificação , Genótipo , Técnicas de Genotipagem , Groenlândia , Repetições de Microssatélites/genética , Fitoplâncton/genética , Dinâmica Populacional , Temperatura , Fatores de Tempo
2.
J Phycol ; 52(2): 184-99, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27037584

RESUMO

A new nontoxic Pseudo-nitzschia species belonging to the P. pseudodelicatissima complex, P. arctica, was isolated from different areas of the Arctic. The erection of P. arctica is mainly supported by molecular data, since the species shares identical ultrastructure with another species in the complex, P. fryxelliana, and represents a new case of crypticity within the genus. Despite their morphological similarity, the two species are not closely related in phylogenies based on LSU, ITS and rbcL. Interestingly, P. arctica is phylogenetically most closely related to P. granii and P. subcurvata, from which the species is, however, morphologically different. P. granii and P. subcurvata lack the central larger interspace which is one of the defining features of the P. pseudodelicatissima complex. The close genetic relationship between P. arctica and the two species P. granii and P. subcurvata is demonstrated by analysis of the secondary structure of ITS2 which revealed no compensatory base changes, two hemi-compensatory base changes, and two deletions in P. arctica with respect to the other two species. These findings emphasize that rates of morphological differentiation, molecular evolution and speciation are often incongruent for Pseudo-nitzschia species, resulting in a restricted phylogenetic value for taxonomic characters used to discriminate species. The description of a new cryptic species, widely distributed in the Arctic and potentially representing an endemic component of the Arctic diatom flora, reinforces the idea of the existence of noncosmopolitan Pseudo-nitzschia species and highlights the need for combined morphological and molecular analyses to assess the distributional patterns of phytoplankton species.


Assuntos
Temperatura Baixa , Diatomáceas/classificação , Água , Sequência de Bases , Diatomáceas/citologia , Diatomáceas/ultraestrutura , Funções Verossimilhança , Conformação de Ácido Nucleico , Filogenia , Especificidade da Espécie , Testes de Toxicidade
3.
Mar Drugs ; 13(6): 3809-35, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26087022

RESUMO

Diatoms of the genus Pseudo-nitzschia produce domoic acid (DA), a toxin that is vectored in the marine food web, thus causing serious problems for marine organisms and humans. In spite of this, knowledge of interactions between grazing zooplankton and diatoms is restricted. In this study, we examined the interactions between Calanus copepodites and toxin producing Pseudo-nitzschia. The copepodites were fed with different concentrations of toxic P. seriata and a strain of P. obtusa that previously was tested to be non-toxic. The ingestion rates did not differ among the diets (P. seriata, P. obtusa, a mixture of both species), and they accumulated 6%-16% of ingested DA (up to 420 µg per dry weight copepodite). When P. seriata was exposed to the copepodites, either through physical contact with the grazers or separated by a membrane, the toxicity of P. seriata increased (up to 3300%) suggesting the response to be chemically mediated. The induced response was also triggered when copepodites grazed on another diatom, supporting the hypothesis that the cues originate from the copepodite. Neither pH nor nutrient concentrations explained the induced DA production. Unexpectedly, P. obtusa also produced DA when exposed to grazing copepodites, thus representing the second reported toxic polar diatom.


Assuntos
Copépodes/fisiologia , Diatomáceas/fisiologia , Ácido Caínico/análogos & derivados , Toxinas Marinhas/toxicidade , Animais , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Ácido Caínico/toxicidade
4.
Aquat Toxicol ; 159: 52-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521565

RESUMO

The toxic diatom Pseudo-nitzschia seriata was exposed directly and indirectly (separated by a membrane) to copepods, Calanus hyperboreus and C. finmarchicus, to evaluate the effects of the copepods on domoic acid production and chain formation in P. seriata. The toxicity of P. seriata increased in the presence of the copepods. This response was chemically mediated without physical contact between the organisms suggesting that it was induced by potential waterborne cues from the copepods or changes in water chemistry. Domoic acid production may be related to defense against grazing in P. seriata although it was not shown in the present study. To evaluate if the induction of domoic acid production was mediated by the chemical cues from damaged P. seriata cells, live P. seriata cells were exposed to a P. seriata cell homogenate, but no effect was observed. Chain formation in P. seriata was affected only when in direct contact with the copepods. This study suggests that the presence of zooplankton may be one of the factors affecting the toxicity of Pseudo-nitzschia blooms in the field.


Assuntos
Copépodes/fisiologia , Diatomáceas/fisiologia , Ácido Caínico/análogos & derivados , Animais , Ecossistema , Ácido Caínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...