Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140540

RESUMO

MOTIVATION: Various computational biology calculations require a probabilistic optimization protocol to determine the parameters that capture the system at a desired state in the configurational space. Many existing methods excel at certain scenarios, but fail in others due, in part, to an inefficient exploration of the parameter space and easy trapping into local minima. Here, we developed a general-purpose optimization engine in R that can be plugged to any, simple or complex, modelling initiative through a few lucid interfacing functions, to perform a seamless optimization with rigorous parameter sampling. RESULTS: ROptimus features simulated annealing and replica exchange implementations equipped with adaptive thermoregulation to drive Monte Carlo optimization process in a flexible manner, through constrained acceptance frequency but unconstrained adaptive pseudo temperature regimens. We exemplify the applicability of our R optimizer to a diverse set of problems spanning data analyses and computational biology tasks. AVAILABILITY AND IMPLEMENTATION: ROptimus is written and implemented in R, and is freely available from CRAN (http://cran.r-project.org/web/packages/ROptimus/index.html) and GitHub (http://github.com/SahakyanLab/ROptimus).


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , Método de Monte Carlo , Temperatura
2.
Gut ; 72(6): 1174-1185, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889906

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) displays a remarkable propensity towards therapy resistance. However, molecular epigenetic and transcriptional mechanisms enabling this are poorly understood. In this study, we aimed to identify novel mechanistic approaches to overcome or prevent resistance in PDAC. DESIGN: We used in vitro and in vivo models of resistant PDAC and integrated epigenomic, transcriptomic, nascent RNA and chromatin topology data. We identified a JunD-driven subgroup of enhancers, called interactive hubs (iHUBs), which mediate transcriptional reprogramming and chemoresistance in PDAC. RESULTS: iHUBs display characteristics typical for active enhancers (H3K27ac enrichment) in both therapy sensitive and resistant states but exhibit increased interactions and production of enhancer RNA (eRNA) in the resistant state. Notably, deletion of individual iHUBs was sufficient to decrease transcription of target genes and sensitise resistant cells to chemotherapy. Overlapping motif analysis and transcriptional profiling identified the activator protein 1 (AP1) transcription factor JunD as a master transcription factor of these enhancers. JunD depletion decreased iHUB interaction frequency and transcription of target genes. Moreover, targeting either eRNA production or signaling pathways upstream of iHUB activation using clinically tested small molecule inhibitors decreased eRNA production and interaction frequency, and restored chemotherapy responsiveness in vitro and in vivo. Representative iHUB target genes were found to be more expressed in patients with poor response to chemotherapy compared with responsive patients. CONCLUSION: Our findings identify an important role for a subgroup of highly connected enhancers (iHUBs) in regulating chemotherapy response and demonstrate targetability in sensitisation to chemotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fatores de Transcrição/genética , RNA , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Pancreáticas
3.
Angew Chem Int Ed Engl ; 60(18): 10286-10294, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33605024

RESUMO

Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.

4.
Cell Death Differ ; 28(2): 700-714, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32901120

RESUMO

The role of histone ubiquitination in directing cell lineage specification is only poorly understood. Our previous work indicated a role of the histone 2B ubiquitin ligase RNF40 in controlling osteoblast differentiation in vitro. Here, we demonstrate that RNF40 has a stage-dependent function in controlling osteoblast differentiation in vivo. RNF40 expression is essential for early stages of lineage specification, but is dispensable in mature osteoblasts. Paradoxically, while osteoblast-specific RNF40 deletion led to impaired bone formation, it also resulted in increased bone mass due to impaired bone cell crosstalk. Loss of RNF40 resulted in decreased osteoclast number and function through modulation of RANKL expression in OBs. Mechanistically, we demonstrate that Tnfsf11 (encoding RANKL) is an important target gene of H2B monoubiquitination. These data reveal an important role of RNF40-mediated H2B monoubiquitination in bone formation and remodeling and provide a basis for exploring this pathway for the treatment of conditions such as osteoporosis or cancer-associated osteolysis.


Assuntos
Histonas/metabolismo , Osteócitos/metabolismo , Ligante RANK/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Ligante RANK/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
5.
Bio Protoc ; 8(17): e3000, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34395794

RESUMO

MicroRNA-induced gene regulation is a growing field in basic and translational research. Examining this regulation directly in cells is necessary to validate high-throughput data originated from RNA sequencing technologies. For this several studies employ luciferase-based reporters that usually measure the whole cell population, which comes with low resolution for the complexity of the miRNA-induced regulation. Here, we provide a protocol using a dual-fluorescence reporter and flow cytometry reaching single cell resolution; the protocol contains a simplified workflow that includes: vector generation, data acquisition, processing, and analysis using the R environment. Our protocol enables high-resolution measurements of miRNA induced post-transcriptional gene regulation and combined with system biology it can be used to estimate miRNAs proficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...