Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13310, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172806

RESUMO

The use of cell-free scaffolds for the regeneration of clinically relevant volumes of soft tissue has been challenged, particularly in the case of synthetic biomaterials, by the difficulty of reconciling the manufacturing and biological performance requirements. Here, we investigated in vivo the importance of biomechanical and biochemical cues for conditioning the 3D regenerative microenvironment towards soft tissue formation. In particular, we evaluated the adipogenesis changes related to 3D mechanical properties by creating a gradient of 3D microenvironments with different stiffnesses using 3D Poly(Urethane-Ester-ether) PUEt scaffolds. Our results showed a significant increase in adipose tissue proportions while decreasing the stiffness of the 3D mechanical microenvironment. This mechanical conditioning effect was also compared with biochemical manipulation by loading extracellular matrices (ECMs) with a PPAR-γ activating molecule. Notably, results showed mechanical and biochemical conditioning equivalency in promoting adipose tissue formation in the conditions tested, suggesting that adequate mechanical signaling could be sufficient to boost adipogenesis by influencing tissue remodeling. Overall, this work could open a new avenue in the design of synthetic 3D scaffolds for microenvironment conditioning towards the regeneration of large volumes of soft and adipose tissue, with practical and direct implications in reconstructive and cosmetic surgery.


Assuntos
Microambiente Celular/fisiologia , Regeneração/fisiologia , Células 3T3-L1 , Adipogenia/fisiologia , Tecido Adiposo/fisiologia , Animais , Linhagem Celular , Matriz Extracelular/fisiologia , Camundongos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/fisiologia
2.
Acta Biomater ; 73: 141-153, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29654992

RESUMO

Reconstructive treatment after trauma and tumor resection would greatly benefit from an effective soft tissue regeneration. The use of cell-free scaffolds for adipose tissue regeneration in vivo is emerging as an attractive alternative to tissue-engineered constructs, since this approach avoids complications due to cell manipulation and lack of synchronous vascularization. In this study, we developed a biodegradable polyurethane-based scaffold for soft tissue regeneration, characterized by an exceptional combination between softness and resilience. Exploring the potential as a cell-free scaffold required profound understanding of the impact of its intrinsic physico-chemical properties on the biological performance in vivo. We investigated the effect of the scaffold's hydrophilic character, degradation kinetics, and internal morphology on (i) the local inflammatory response and activation of MGCs (foreign body response); (ii) its ability to promote rapid vascularisation, cell infiltration and migration through the scaffold over time; and (iii) the grade of maturation of the newly formed tissue into vascularized soft tissue in a murine model. The study revealed that soft tissue regeneration in vivo proceeded by gradual infiltration of undifferentiated mesenchymal cells though the periphery toward the center of the scaffold, where the rapid formation of a functional and well-formed vascular network supported cell viability overtime. STATEMENT OF SIGNIFICANCE: Exploring the potential of polyurethane-based soft foam as cell-free scaffold for soft tissue regeneration. In this work, we address the unmet need for synthetic functional soft tissue substitutes that provide adequate biological and mechanical support to soft tissue. We developed a series of flexible cross-linked polyurethane copolymer scaffolds with remarkable fatigue-resistance and tunable physico-chemical properties for soft tissue regeneration in vivo. Accordingly, we could extend the potential of this class of biomaterials, which was so far confined for bone and osteochondral tissue regeneration, to other types of connective tissue.


Assuntos
Tecido Adiposo/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Poliuretanos , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Tecido Adiposo/patologia , Animais , Camundongos , Células NIH 3T3 , Poliuretanos/química , Poliuretanos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...