Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984054

RESUMO

X-ray photoelectron spectroscopy was used to study the direct synthesis of strontium and molybdenum oxide thin films deposited by multitarget reactive magnetron sputtering (MT-RMS). Sr and Mo targets with a purity of 99.9% and 99.5%, respectively, were co-sputtered in an argon-oxygen gas mixture. The chamber was provided with an oxygen background flow plus an additional controlled oxygen supply to each of the targets. We demonstrate that variation in the power applied to the Mo target during MT-RMS enables the production of strontium and molybdenum oxide films with variable concentrations of Mo atoms. Both molybdenum and strontium were found in the oxidized state, and no metallic peaks were detected. The deconvoluted high-resolution XPS spectra of molybdenum revealed the presence of several Mo 3d peaks, which indicates molybdenum bonds in a lower valence state. Contrary to the Mo spectra, the high-resolution strontium Sr 3d spectra for the same samples were very similar, and no additional peaks were detected.

2.
Opt Express ; 30(15): 27730-27745, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236938

RESUMO

The aim of shape-controlled colloidal synthesis of gold (Au) is to produce Au nanoparticles (NPs) with fine control of shapes, sizes, and dispersities. We show how transient absorption spectroscopy (TAS) can be used to rapidly and accurately quantify the vast ensemble of shapes of Au NPs in solution within minutes, including the synthesized nanorods, decahedra, and nanospheres. Colloidal solutions containing Au NPs were measured in TAS and their localized surface plasmon resonance (LSPR) modes were classified according to the shape, wavelength and number of peaks. Then their excited-state relaxation dynamics were used to ascertain their electron-phonon (e-ph) coupling time constant and frequency of optomechanical modes. TAS can quickly show that an Au nanosphere sample contains a tiny fraction of Au nanorods, whereas steady-state absorbance is totally blind to the presence of nanorods. Additionally, the TAS experiments indicate that the characteristic e-ph coupling time constants in Au nanorods depend on the NPs dimensions at high excitation intensity (> 6 µJ/cm2) which can help identify if there are any elongated Au NPs in Au spheres samples. Finally, optomechanical oscillations formed by NPs breathing modes were observed, providing information related to the average size and monodispersity of Au nanospheres and nanorods.

3.
Materials (Basel) ; 14(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300877

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have acquired great significance in the textile sector due to their impressive efficiency and multifold utilization, such as antimicrobials, UV protection, photo catalytic activity, and self-cleaning. The aim of this work is in-situ growth of ZnO NPs on 100% cotton fabrics with the one-step hydrothermal method for preparation of multifunctional textile with UV protecting, antibacterial, and photo catalytic properties. Sodium hydroxide (NaOH) and Zinc nitrate hexahydrate [Zn(NO3)2·6H2O] were used as reactants for the growth of zinc oxide on the 100% cotton fabrics. The loaded amount of Zn contents on the cotton fabric was determined by using induced coupled plasma atomic emission spectroscopy (ICP-AES). The surface morphological characterization of deposited ZnO NPs was examined, employing scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and, Fourier- transform infrared spectroscopy (FTIR). The characterization results showed the presence of ZnO NPs on cotton fabrics having hexagonal wurtzite crystalline structure. The synthesized ZnO NPs on fabrics exhibited promising results for antibacterial, UV protection, and photo catalytic performance.

4.
Nanomaterials (Basel) ; 9(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987127

RESUMO

This study demonstrates a new, robust, and accessible deposition technique of metal nanoparticle arrays (NPAs), which uses nanoporous anodic alumina (NAA) as a template for capillary force-assisted convective colloid (40, 60, and 80 nm diameter Au) assembly. The NPA density and nanoparticle size can be independently tuned by the anodization conditions and colloid synthesis protocols. This enables production of non-touching variable-density NPAs with controllable gaps in the 20-60 nm range. The NPA nearest neighbor center distance in the present study was fixed to 100 nm by the choice of anodization protocol. The obtained Au NPAs have the resonant scattering maxima in the visible spectral range, with a refractometric sensitivity, which can be tuned by the variation of the array density. The thickness of the NAA layer in an Aluminum-NAA-NPA multilayer system enables further tuning of the resonance frequency and optimization for use with specific molecules, e.g., to avoid absorption bands. Applicability of the mentioned multilayers for colorimetric refractive index (RI) sensing is demonstrated. Their use as Surface-Enhanced Raman Scattering (SERS) substrates is tested using hemoglobin as a biological probe molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...