Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(2): 149-170, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071476

RESUMO

Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Íntrons/genética , Ribonucleoproteína Nuclear Pequena U2/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Splicing de RNA , Spliceossomos/genética , Aminoácidos/genética , Precursores de RNA/genética
2.
BMC Microbiol ; 23(1): 299, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864136

RESUMO

The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , RNA Ribossômico/genética , Bactérias/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Microbioma Gastrointestinal/genética
3.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873484

RESUMO

Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.

4.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468686

RESUMO

Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and nearly complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the United States or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside California, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Esgotos/virologia , Sequência de Bases , COVID-19/epidemiologia , California/epidemiologia , Microbiologia Ambiental , Genoma Viral , Genótipo , Humanos , Metagenoma , Metagenômica , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
5.
PLoS One ; 12(11): e0187595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29112986

RESUMO

Gene expression DNA microarrays have been vital for characterizing whole-genome transcriptional profiles. Nevertheless, their effectiveness relies heavily on the accuracy of genome sequences, the annotation of gene structures, and the sequence-dependent performance of individual probes. Currently available gene expression arrays for the malaria parasite Plasmodium falciparum rely on an average of 2 probes per gene, usually positioned near the 3' end of genes; consequently, existing designs are prone to measurement bias and cannot capture complexities such as the occurrence of transcript isoforms arising from alternative splicing or alternative start/ stop sites. Here, we describe two novel gene expression arrays with exon-focused probes designed with an average of 12 and 20 probes spanning each gene. This high probe density minimizes signal noise inherent in probe-to-probe sequence-dependent hybridization intensity. We demonstrate that these exon arrays accurately profile genome-wide expression, comparing favorably to currently available arrays and RNA-seq profiling, and can detect alternatively spliced transcript isoforms as well as non-coding RNAs (ncRNAs). Of the 964 candidate alternate splicing events from published RNA-seq studies, 162 are confirmed using the exon array. Furthermore, the exon array predicted 330 previously unidentified alternate splicing events. Gene expression microarrays continue to offer a cost-effective alternative to RNA-seq for the simultaneous monitoring of gene expression and alternative splicing events. Microarrays may even be preferred in some cases due to their affordability and the rapid turn-around of results when hundreds of samples are required for fine-scale systems biology investigations, including the monitoring of the networks of gene co-expression in the emergence of drug resistance.


Assuntos
Expressão Gênica , Plasmodium/genética , RNA Mensageiro/genética , Processamento Alternativo , Animais , Éxons , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
6.
F1000Res ; 5: 158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27347373

RESUMO

The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring biological systems.

7.
Mol Biol Evol ; 33(3): 603-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26613787

RESUMO

If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.


Assuntos
Variações do Número de Cópias de DNA , Genética Populacional , Plasmodium/genética , Frequência do Gene , Genoma de Protozoário , Genômica , Genótipo , Haplótipos , Humanos , Malária/parasitologia , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Controle de Qualidade , Reprodutibilidade dos Testes , Seleção Genética
8.
BMC Genomics ; 16: 1030, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637195

RESUMO

BACKGROUND: Transcriptional responses to small molecules can provide insights into drug mode of action (MOA). The capacity of the human malaria parasite, Plasmodium falciparum, to respond specifically to transcriptional perturbations has been unclear based on past approaches. Here, we present the most extensive profiling to date of the parasite's transcriptional responsiveness to thirty-one chemically and functionally diverse small molecules. METHODS: We exposed two laboratory strains of the human malaria parasite P. falciparum to brief treatments of thirty-one chemically and functionally diverse small molecules associated with biological effects across multiple pathways based on various levels of evidence. We investigated the impact of chemical composition and MOA on gene expression similarities that arise between perturbations by various compounds. To determine the target biological pathways for each small molecule, we developed a novel framework for encoding small molecule effects on a spectra of biological processes or GO functions that are enriched in the differentially expressed genes of a given small molecule perturbation. RESULTS: We find that small molecules associated with similar transcriptional responses contain similar chemical features, and/ or have a shared MOA. The approach also revealed complex relationships between drugs and biological pathways that are missed by most exisiting approaches. For example, the approach was able to partition small molecule responses into drug-specific effects versus non-specific effects. CONCLUSIONS: Our work provides a new framework for linking transcriptional responses to drug MOA in P. falciparum and can be generalized for the same purpose in other organisms.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Perfilação da Expressão Gênica , Humanos , Malária Falciparum/parasitologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Protozoários/química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
9.
Sci Rep ; 5: 15930, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541648

RESUMO

The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling is an established tool for classification of drugs with similar mechanisms of action by comparing drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets can be obtained by associations between shifts in drug fitness and specific genetic changes in the mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs targeting the same pathway shared similar response profiles and multiple pairwise correlations of the chemogenomic profiles revealed novel insights into drugs' mechanisms of action. A mutant of the artemisinin resistance candidate gene - "K13-propeller" gene (PF3D7_1343700) exhibited increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal transduction and cell cycle regulation pathways.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Descoberta de Drogas/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Mutagênese Insercional/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
10.
BMC Genomics ; 16: 115, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25765049

RESUMO

BACKGROUND: The paradigm of resistance evolution to chemotherapeutic agents is that a key coding mutation in a specific gene drives resistance to a particular drug. In the case of resistance to the anti-malarial drug chloroquine (CQ), a specific mutation in the transporter pfcrt is associated with resistance. Here, we apply a series of analytical steps to gene expression data from our lab and leverage 3 independent datasets to identify pfcrt-interacting genes. Resulting networks provide insights into pfcrt's biological functions and regulation, as well as the divergent phenotypic effects of its allelic variants in different genetic backgrounds. RESULTS: To identify pfcrt-interacting genes, we analyze pfcrt co-expression networks in 2 phenotypic states - CQ-resistant (CQR) and CQ-sensitive (CQS) recombinant progeny clones - using a computational approach that prioritizes gene interactions into functional and regulatory relationships. For both phenotypic states, pfcrt co-expressed gene sets are associated with hemoglobin metabolism, consistent with CQ's expected mode of action. To predict the drivers of co-expression divergence, we integrate topological relationships in the co-expression networks with available high confidence protein-protein interaction data. This analysis identifies 3 transcriptional regulators from the ApiAP2 family and histone acetylation as potential mediators of these divergences. We validate the predicted divergences in DNA mismatch repair and histone acetylation by measuring the effects of small molecule inhibitors in recombinant progeny clones combined with quantitative trait locus (QTL) mapping. CONCLUSIONS: This work demonstrates the utility of differential co-expression viewed in a network framework to uncover functional and regulatory divergence in phenotypically distinct parasites. pfcrt-associated co-expression in the CQ resistant progeny highlights CQR-specific gene relationships and possible targeted intervention strategies. The approaches outlined here can be readily generalized to other parasite populations and drug resistances.


Assuntos
Resistência a Medicamentos/genética , Variação Genética , Malária Falciparum/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Cloroquina/uso terapêutico , Regulação da Expressão Gênica , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/biossíntese , Mutação , Plasmodium falciparum/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Proteínas de Protozoários/biossíntese , Locos de Características Quantitativas/genética
11.
BMC Genomics ; 15: 719, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25159520

RESUMO

BACKGROUND: Analysis of single nucleotide polymorphisms (SNPs) derived from whole-genome studies allows for rapid evaluation of genome-wide diversity, and genomic epidemiology studies of Plasmodium falciparum provide insights into parasite population structure, gene flow, drug resistance and vaccine development. In areas with adequate cold chain facilities, large volumes of leukocyte-depleted patient blood can be frozen for use in parasite genomic analyses. In more remote endemic areas smaller volumes of infected blood are taken by finger prick, and dried and stored on filter paper. These dried blood spots do not generally yield enough concentrated parasite DNA for whole-genome sequencing. RESULTS: A DNA microarray was designed for use on field samples to type a genome-wide set of SNPs which prior sequencing had shown to be variable in Africa, Southeast Asia, and Papua New Guinea. An algorithm was designed to call SNPs in samples with low parasite DNA. With this new algorithm SNP-calling accuracy of 98% was measured by hybridizing purified DNA from malaria lab strains and comparing calls with SNPs called from full genome sequences. An average accuracy of >98% was likewise obtained for DNA extracted from malaria field samples collected in studies in Southeast Asia, with an average call rate of > 82%. CONCLUSION: This new high-density microarray provided high quality SNP calls from a wide range of parasite DNA quantities, and represents a robust tool for genome-wide analysis of malaria parasites in diverse settings.


Assuntos
DNA de Protozoário/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/normas , Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/normas , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Padrões de Referência
12.
PLoS Genet ; 10(1): e1004085, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391526

RESUMO

Drug resistant strains of the malaria parasite, Plasmodium falciparum, have rendered chloroquine ineffective throughout much of the world. In parts of Africa and Asia, the coordinated shift from chloroquine to other drugs has resulted in the near disappearance of chloroquine-resistant (CQR) parasites from the population. Currently, there is no molecular explanation for this phenomenon. Herein, we employ metabolic quantitative trait locus mapping (mQTL) to analyze progeny from a genetic cross between chloroquine-susceptible (CQS) and CQR parasites. We identify a family of hemoglobin-derived peptides that are elevated in CQR parasites and show that peptide accumulation, drug resistance, and reduced parasite fitness are all linked in vitro to CQR alleles of the P. falciparum chloroquine resistance transporter (pfcrt). These findings suggest that CQR parasites are less fit because mutations in pfcrt interfere with hemoglobin digestion by the parasite. Moreover, our findings may provide a molecular explanation for the reemergence of CQS parasites in wild populations.


Assuntos
Cloroquina/uso terapêutico , Hemoglobinas/metabolismo , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Locos de Características Quantitativas/genética , Antimaláricos/uso terapêutico , Mapeamento Cromossômico , Resistência a Medicamentos/genética , Hemoglobinas/genética , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metabolismo/genética , Peptídeos/genética , Peptídeos/isolamento & purificação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
13.
PLoS One ; 8(11): e79059, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278114

RESUMO

Resistance to the cytostatic activity of the antimalarial drug chloroquine (CQ) is becoming well understood, however, resistance to cytocidal effects of CQ is largely unexplored. We find that PfCRT mutations that almost fully recapitulate P. falciparum cytostatic CQ resistance (CQR(CS)) as quantified by CQ IC50 shift, account for only 10-20% of cytocidal CQR (CQR(CC)) as quantified by CQ LD50 shift. Quantitative trait loci (QTL) analysis of the progeny of a chloroquine sensitive (CQS; strain HB3)×chloroquine resistant (CQR; strain Dd2) genetic cross identifies distinct genetic architectures for CQR(CS) vs CQR(CC) phenotypes, including identification of novel interacting chromosomal loci that influence CQ LD50. Candidate genes in these loci are consistent with a role for autophagy in CQR(CC), leading us to directly examine the autophagy pathway in intraerythrocytic CQR parasites. Indirect immunofluorescence of RBC infected with synchronized CQS vs CQR trophozoite stage parasites reveals differences in the distribution of the autophagy marker protein PfATG8 coinciding with CQR(CC). Taken together, the data show that an unusual autophagy-like process is either activated or inhibited for intraerythrocytic trophozoite parasites at LD50 doses (but not IC50 doses) of CQ, that the pathway is altered in CQR P. falciparum, and that it may contribute along with mutations in PfCRT to confer the CQR(CC) phenotype.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Resistência a Medicamentos , Proteínas de Protozoários/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Science ; 336(6077): 79-82, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22491853

RESUMO

Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia and has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CRs) after treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6969 polymorphic single-nucleotide polymorphisms (SNPs) in 91 parasites from Cambodia, Thailand, and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chromosome 13 that shows strong association (P = 10(-6) to 10(-12)) with slow CRs, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Genoma de Protozoário , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Seleção Genética , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Camboja , Variações do Número de Cópias de DNA , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Humanos , Laos , Malária Falciparum/tratamento farmacológico , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Tailândia
15.
BMC Genomics ; 12: 457, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21936954

RESUMO

BACKGROUND: Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. RESULTS: We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. CONCLUSIONS: CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.


Assuntos
Cruzamentos Genéticos , Dosagem de Genes , Genoma de Protozoário , Padrões de Herança , Plasmodium falciparum/genética , Hibridização Genômica Comparativa , DNA de Protozoário/genética , Ligação Genética , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas
16.
Genome Biol ; 12(4): R35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21477297

RESUMO

We present an optimized probe design for copy number variation (CNV) and SNP genotyping in the Plasmodium falciparum genome. We demonstrate that variable length and isothermal probes are superior to static length probes. We show that sample preparation and hybridization conditions mitigate the effects of host DNA contamination in field samples. The microarray and workflow presented can be used to identify CNVs and SNPs with 95% accuracy in a single hybridization, in field samples containing up to 92% human DNA contamination.


Assuntos
Variações do Número de Cópias de DNA/genética , Técnicas de Genotipagem , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Animais , Contaminação por DNA , Humanos
17.
BMC Genomics ; 12: 116, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21324207

RESUMO

BACKGROUND: Knowledge of the origins, distribution, and inheritance of variation in the malaria parasite (Plasmodium falciparum) genome is crucial for understanding its evolution; however the 81% (A+T) genome poses challenges to high-throughput sequencing technologies. We explore the viability of the Roche 454 Genome Sequencer FLX (GS FLX) high throughput sequencing technology for both whole genome sequencing and fine-resolution characterization of genetic exchange in malaria parasites. RESULTS: We present a scheme to survey recombination in the haploid stage genomes of two sibling parasite clones, using whole genome pyrosequencing that includes a sliding window approach to predict recombination breakpoints. Whole genome shotgun (WGS) sequencing generated approximately 2 million reads, with an average read length of approximately 300 bp. De novo assembly using a combination of WGS and 3 kb paired end libraries resulted in contigs ≤ 34 kb. More than 8,000 of the 24,599 SNP markers identified between parents were genotyped in the progeny, resulting in a marker density of approximately 1 marker/3.3 kb and allowing for the detection of previously unrecognized crossovers (COs) and many non crossover (NCO) gene conversions throughout the genome. CONCLUSIONS: By sequencing the 23 Mb genomes of two haploid progeny clones derived from a genetic cross at more than 30× coverage, we captured high resolution information on COs, NCOs and genetic variation within the progeny genomes. This study is the first to resequence progeny clones to examine fine structure of COs and NCOs in malaria parasites.


Assuntos
Mapeamento Cromossômico , Conversão Gênica , Genoma de Protozoário , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plasmodium falciparum/genética , Alelos , Pontos de Quebra do Cromossomo , Cruzamentos Genéticos , DNA de Protozoário/genética , Dosagem de Genes , Biblioteca Genômica , Genótipo , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
18.
J Mol Evol ; 71(4): 268-78, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20730584

RESUMO

Genome variation studies in Plasmodium falciparum have focused on SNPs and, more recently, large-scale copy number polymorphisms and ectopic rearrangements. Here, we examine another source of variation: variable number tandem repeats (VNTRs). Interspersed low complexity features, including the well-studied P. falciparum microsatellite sequences, are commonly classified as VNTRs; however, this study is focused on longer coding VNTR polymorphisms, a small class of copy number variations. Selection against frameshift mutation is a main constraint on tandem repeats (TRs) in coding regions, while limited propagation of TRs longer than 975 nt total length is a minor restriction in coding regions. Comparative analysis of three P. falciparum genomes reveals that more than 9% of all P. falciparum ORFs harbor VNTRs, much more than has been reported for any other species. Moreover, genotyping of VNTR loci in a drug-selected line, progeny of a genetic cross, and 334 field isolates demonstrates broad variability in these sequences. Functional enrichment analysis of ORFs harboring VNTRs identifies stress and DNA damage responses along with chromatin modification activities, suggesting an influence on genome mutability and functional variation. Analysis of the repeat units and their flanking regions in both P. falciparum and Plasmodium reichenowi sequences implicates a replication slippage mechanism in the generation of TRs from an initially unrepeated sequence. VNTRs can contribute to rapid adaptation by localized sequence duplication. They also can confound SNP-typing microarrays or mapping short-sequence reads and therefore must be accounted for in such analyses.


Assuntos
Genes de Protozoários/genética , Repetições Minissatélites/genética , Plasmodium falciparum/genética , Mutação da Fase de Leitura/genética , Dosagem de Genes/genética , Loci Gênicos/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetidas Terminais/genética
19.
Genomics ; 93(6): 543-50, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19285129

RESUMO

Microarray-based comparative genomic hybridizations (CGH) interrogate genomic DNA to identify structural differences such as amplifications and deletions that are easily detected as large signal aberrations. Subtle signal deviations caused by single nucleotide polymorphisms (SNPs) can also be detected but is challenged by a high AT content (81%) in P. falciparum. We compared genome-wide CGH signal to sequence polymorphisms between parasite strains 3D7, HB3, and Dd2 using NimbleGen microarrays. From 23,191 SNPs (excluding var/rif/stevor genes), our CGH probe set detected SNPs with >99.9% specificity but low (<10%) sensitivity. Probe length, melting temperature, GC content, SNP location in the probe, mutation type, and hairpin structures affected SNP sensitivity. Previously unrecognized variable number tandem repeats (VNTRs) also were detected by this method. These findings will guide the redesign of a probe set to optimize an openly available CGH microarray platform for high-resolution genotyping suitable for population genomics studies.


Assuntos
Sondas de DNA/genética , Hibridização de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Composição de Bases/genética , Análise em Microsséries/métodos , Repetições Minissatélites/genética , Sensibilidade e Especificidade
20.
PLoS Biol ; 6(9): e238, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18828674

RESUMO

The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs) in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.


Assuntos
Regulação da Expressão Gênica , Plasmodium falciparum/genética , Polimorfismo Genético , Transcrição Gênica , Alelos , Animais , Ciclo Celular/genética , Cromossomos , Resistência a Medicamentos/genética , Amplificação de Genes , Deleção de Genes , Perfilação da Expressão Gênica , Ligação Genética , Humanos , Malária Falciparum , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...