Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1274943, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034557

RESUMO

Excessive nitrogen (N) application in wheat-maize cropping systems was adjusted towards more sustainable practices to reduce hydrological N losses while maintaining crop yield. In comprehensive quantification of N management effects on crop yield, N use efficiency (NUE), hydrological N losses, and soil nitrate residual across eight seasons, we have added to growing evidence of strategies beneficial for sustainable crop production with lower hydrological N losses. The results show that adjusted N practices enhanced crop yield and NUE, as compared to farmer's practices, but benefits varied with N rates and types. Optimized N treatment (OPT, 180 kg N ha-1 in both maize and wheat seasons) with or without straw returning produced the most crop yield. They increased maize yield by 5.5% and 7.3% and wheat yield by 6.2% and 3.2% on average, as compared to farmer's practice with huge N application (FP, 345 kg N ha-1 and 240 kg N ha-1 in maize and wheat). Regulation of N release through amendment with controlled release urea at a rate of 144 kg N ha-1 crop-1 (CRU treatment) obtained 4.4% greater maize yield than FP, and sustained a similar wheat yield with less N input, resulting in the highest crop NUE. Additionally, CRU was most effective in mitigating hydrological N loss, with 39.5% and 45.5% less leachate N and 31.9% and 35.9% less runoff N loss than FP in maize and wheat seasons. Synthetic N input correlated significantly and positively with runoff and leachate N losses, indicating it was one of the dominant factors driving hydrological N losses. Moreover, compared to OPT, additional straw returning (STR) or substituting 20% of the nutrients by duck manure (DMS) further reduced runoff N discharges due to the fact that organic matter incorporation increased resilience to rainfall. N over-application in FP caused considerable nitrate accumulation in the 0-90-cm soil profile, while the adjusted N practices, i.e., OPT, STR, CRU, and DMS treatments effectively controlled it to a range of 79.6-92.9 kg N ha-1. This study suggests that efforts using optimized N treatment integrated with CRU or straw returning should be encouraged for sustainable crop production in this region.

2.
Chemosphere ; 344: 140328, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783359

RESUMO

The increasing demand for environmentally friendly agricultural practices has driven the need for diversified crop cultivation to optimize crop productivity while minimizing carbon footprints (CFs). However, the impacts of crop diversification on crop production and environmental benefits are still poorly understood. In this study, conducted at two sites in the Yellow River Delta, China, we investigated the effects of legume intercropping, specifically maize/soybean (M/S) and maize/peanut (M/P) systems, on crop productivity, economic return, ecosystem economic budget (NEEB), CF, and carbon sustainability index (CSI) in comparison to conventional monocrops. Crops were grown in replicated field plots and fertilized in their strips according to common practice for monocrops. Compared to the expected averages of monocrops, maize/legume intercropping demonstrated higher crop yields, with M/S achieving a 37% and 43% increase at the two sites, respectively, and M/P achieving an 11% and 20% increase. The higher overyielding in M/S was attributed to stronger selection effects, i.e., interspecific facilitation. However, the complementarity effects induced by the competitive dominance of maize were similar in both intercropping systems. Additionally, M/S exhibited greater potential for improving net revenues compared to M/P. Life cycle assessments revealed lower CFs in the intercropping systems compared to monocultures. M/S reduced CFs per unit of area by 26.8% at both sites, CFs per unit of maize equivalent energy yield by 25% and 33%, and CFs per unit of revenue by 20% and 25% at the two sites, respectively. M/P also resulted in reduced CFs, albeit to a lesser extent. Intercropping enhanced the CSI, with the highest values observed in the M/S system. However, both intercropping systems showed limited effects on soil C sequestration. Overall, our results highlight that maize/legume intercropping is a feasible approach to enhance crop productivity while reducing CFs. The M/S system outperformed the M/P system in terms of crop yields, economic benefits, and CF reduction. However, the intercropping systems showed limited effects on SOC storage. This study provides important implications for sustainable agriculture by appropriate crop diversification.


Assuntos
Fabaceae , Zea mays , Ecossistema , Pegada de Carbono , Rios , Agricultura/métodos , Solo , Produção Agrícola , Verduras , Glycine max , China , Carbono
3.
Heliyon ; 9(4): e14892, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025842

RESUMO

To improve the availability of inorganic phosphorus (P) in soil, we investigated the role of three macromolecular organic acids (MOAs), including fulvic acid (FA), polyaspartic acid (PA), and tannic acid (TA), in reducing the fixation of inorganic P fertilizer in the soil. AlPO4, FePO4, and Ca8H2(PO4)6·5H2O crystals were chosen as insoluble phosphate representatives in the soil to simulate the solubilization process of inorganic P by MOAs. The microstructural and physicochemical properties of AlPO4, FePO4, and Ca8H2(PO4)6·5H2O were determined by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) before and after treatment of MOAs. In addition, the amounts of leached P and fixed inorganic P in Inceptisols and Alfisols affected by MOAs combined with superphosphate (SP) fertilizer were determined by soil leaching experiments. The presence of the three MOAs significantly increased the concentration of leached P and reduced the contents of insoluble inorganic phosphate formed with iron, aluminum, and calcium fixed in the soil, in which PA combined with SP had the most significant effect. Furthermore, the less inorganic P fixation in the combination treatment of MOAs and SP resulted in a greater wheat yield and P uptake. Therefore, MOAs could be a synergistic material for increasing P fertilizer utilization.

4.
Huan Jing Ke Xue ; 43(10): 4755-4764, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224161

RESUMO

To illustrate the effects of long-term straw returning on the fungal community, soil enzyme activity, and crop yield in a fluvo-aquic soil area typical of the Huang-Huai-Hai Plain, a 10-year field experiment (established in 2010) located in Dezhou City, Shandong province, was performed, including three fertilization regimes (NF, no fertilization control; NPK, fertilization with chemical N, P, and K fertilizers; NPKS, straw returning combined with chemical N, P, and K fertilizers). This study aimed to explore the regulation mechanisms of fungal communities on soil fertility, enzyme activities, and crop yield by employing co-occurrence network and structural equation model analyses. Our results showed that long-term straw returning significantly improved soil nutrients, enzyme activity, and wheat yield. Compared with the NPK and NF treatments, soil organic matter (SOM) increased by 9.20% and 34.75%, alkali-hydrolyzed nitrogen (AN) increased by 12.03% and 39.17%, dehydrogenase (DHA) increased by 37.21% and 50.91%, ß-glucosidase (ß-GC) increased by 17.29% and 73.48%, and wheat production increased by 16.22% and 125.53%, respectively. Different long-term fertilization regimes did not significantly change soil fungal α-diversity but resulted in significant differences in ß-diversity. Available phosphorus (AP), SOM, and AN were the main driving factors of fungal community differentiation based on redundancy analysis and hierarchical partitioning analysis. Different abundance analyses revealed significantly different fungal community compositions among fertilization regimes. The long-term NF treatment resulted in a significant enrichment of phosphate/potassium-solubilizing species (i.e., Mortierella, Aspergillus, Ceriporia, and Acremonium) and symbiotic species (i.e., Leohumicola and Hyalodendriella). The relative abundance of pathogenic fungi, namely Sarocladium, Fusarium, and Fusicolla, increased significantly in the NPK treatment. Long-term straw returning in the NPKS treatment significantly stimulated the growth of plant growth-promoting species (i.e., Pseudogymnoascus and Schizothecium) and straw-degrading species (i.e., Trichocladium and Lobulomyces). Co-occurrence network analysis showed that the fungal network was composed of four main modules; the cumulative relative abundance of module 2 was significantly increased under the NPKS treatment and showed a positive linear correlation with DHA and ß-GC. The structural equation model further indicated that the wheat yield was mainly regulated by SOM, whereas species of module 2 could indirectly affect SOM and wheat yield by positively regulating DHA and ß-GC. Taken together, long-term straw returning to the fluvo-aquic soil area of the Huang-Huai-Hai Plain could regulate fungal interspecific interactions, stimulate the growth of specific species groups, inhibit the activity of pathogens, increase the activity of soil enzymes, promote the accumulation of SOM, and achieve high crop yield.


Assuntos
Micobioma , Solo , Agricultura/métodos , Álcalis , Fertilizantes/análise , Nitrogênio/análise , Oxirredutases , Fosfatos/análise , Fósforo/análise , Potássio/química , Solo/química , Microbiologia do Solo , Triticum , beta-Glucosidase
5.
Sci Rep ; 9(1): 12014, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427666

RESUMO

Although humic acid has been demonstrated to improve the quality of some soil types, the long-term effects of humic acid on soil under continuous cropping peanut are not fully understood. This study aimed to investigate the continuous effects of humic acid on the physicochemical properties, microbial diversity, and enzyme activities of soil under continuous cropping peanut. In this study, a three-year consecutive experiment of cropping peanut was conducted in the North China Plain. In addition to the equal nitrogen, phosphorus, and potassium inputs, humic acid treatment was applied with inorganic fertilizers. Compared with control experiments, humic acid increased the yield and quality of continuous cropping peanut. To elucidate the mechanism of humic acid affecting the soil quality, various soil quality indicators were evaluated and compared in this study. It was found that humic acid increased soil nutrient contents, including the total soil nitrogen, total phosphorus, total potassium, available nitrogen, available phosphorus, available potassium, and organic matter contents, which exhibited the maximum effect in the third year. Meanwhile, the urease, sucrase, and phosphatase activities in the soil significantly increased after treated with humic acid, of which the maturity period increased most significantly. The same results were observed for three consecutive years. Microbial diversity varied considerably according to the high throughput sequencing analysis. Specifically, the number of bacteria decreased while that of fungi increased after humic acid treatment. The abundance of Firmicutes in bacteria, Basidiomycota, and Mortierellomycota in fungi all increased, which have been reported as being beneficial to plant growth. In contrast, the abundance of Ascomycota in fungi was reduced, and most of the related genera identified are pathogenic to plants. In conclusion, humic acid improved the yield and quality of continuous cropping peanut because of improved physicochemical properties, enzymatic activities, and microbial diversity of soil, which is beneficial for alleviating the obstacles of continuous cropping peanut.


Assuntos
Arachis , Biodiversidade , Produtos Agrícolas , Fertilizantes/análise , Substâncias Húmicas , Microbiologia do Solo , Solo/química , Produção Agrícola , Ativação Enzimática , Qualidade dos Alimentos , Substâncias Húmicas/análise , Metagenômica/métodos , Microbiota , Rizosfera
6.
Sci Rep ; 7(1): 7016, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765540

RESUMO

Increasing grain zinc (Zn) concentration of cereals for minimizing Zn malnutrition in two billion people represents an important global humanitarian challenge. Grain Zn in field-grown wheat at the global scale ranges from 20.4 to 30.5 mg kg-1, showing a solid gap to the biofortification target for human health (40 mg kg-1). Through a group of field experiments, we found that the low grain Zn was not closely linked to historical replacements of varieties during the Green Revolution, but greatly aggravated by phosphorus (P) overuse or insufficient nitrogen (N) application. We also conducted a total of 320-pair plots field experiments and found an average increase of 10.5 mg kg-1 by foliar Zn application. We conclude that an integrated strategy, including not only Zn-responsive genotypes, but of a similar importance, Zn application and field N and P management, are required to harvest more grain Zn and meanwhile ensure better yield in wheat-dominant areas.


Assuntos
Agricultura/métodos , Grão Comestível/química , Triticum/química , Triticum/crescimento & desenvolvimento , Zinco/análise , Fertilizantes , Genótipo , Humanos , Nitrogênio/metabolismo , Fósforo/metabolismo , Triticum/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA