Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(21): 5731-5734, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910745

RESUMO

In this work, a photonic thermal switch is proposed based on the phase-change material vanadium dioxide (VO2) within the framework of near-field radiative heat transfer (NFRHT). The switch consists of two metamaterials filled with core-shell nanoparticles, with the shell made of VO2. Compared to traditional VO2 slabs, the proposed switch exhibits a more than two times increase in the switching ratio, reaching as high as 90.29% with a 100 nm vacuum gap. The improved switching effect is attributed to the capability of the VO2 shell to couple with the core, greatly enhancing heat transfer with the insulating VO2, while blocking the motivation of the core in the metallic state of VO2. The proposed switch opens pathways for active control of NFRHT and holds practical significance for developing thermal photon-based logic circuits.

2.
Opt Express ; 31(17): 28611-28623, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710911

RESUMO

Polarization-imaging technology has important applications in target detection, communication, biomedicine, and other fields. A polarization imaging system based on metalenses, which provides new possibilities for the realization of highly integrated full-Stokes polarization imaging systems, can solve the problems of traditional polarization imaging systems, such as complex structures, large volumes, and the inability to simultaneously obtain linear and circular polarization states. However, currently designed metalens arrays that can achieve real-time full-Stokes polarization imaging can generally only be used for monochromatic detection, which significantly limits the amount of measured information of the object. Broad-spectrum polarization color imaging allows more image degrees of freedom, enabling more accurate characterization of polarization for multi-target object scenes in complex environments. To achieve broad-spectrum polarization imaging, we propose and design a metalens array that can achieve full-Stokes polarization imaging in the broadband visible range, in which the design process of metalenses for splitting and focusing broadband orthogonal circularly polarized light is emphasized. To design metalenses that can achieve polarization splitting and efficient focusing, we simulate and optimize the height and period of the nano-units and show that smaller periods and larger heights do not always result in higher-performance devices when designing multifunctional metalenses. The designed metalens array can split and diffraction-limited focus the orthogonal polarized incident light to the designated position with average focusing efficiencies of 59.2% under 460-680 nm TM linearly polarized light, 53.1% under TE linearly polarized light, 58.8% under left-handed circularly polarized light, and 52.7% under right-handed circularly polarized light. The designed metalenses can be applied to imaging systems, such as polarization imaging and polarization light-field imaging systems.

3.
Phys Chem Chem Phys ; 25(31): 20782-20793, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401379

RESUMO

As an analogue to an electrical diode, a radiative thermal diode allows radiation to transfer more efficiently in one direction than in the opposite direction by operating in a contactless mode. In this study, we demonstrated that within the framework of three-body photon thermal tunneling, the rectification performance of a three-body radiative diode can be greatly improved by bringing graphene into the system. The system is composed of three parallel slabs, with the hot and cold terminals of the diode coated with graphene films and the intermediate body made of vanadium dioxide (VO2). The rectification factor of the proposed radiative thermal diode reaches 300% with a 350 nm separation distance between the hot and cold terminals of the diode. With the help of graphene, the rectification performance of the radiative thermal diode can be improved by over 11 times. By analyzing the spectral heat flux and energy transmission coefficients, it was found that the improved performance is primarily attributed to the surface plasmon polaritons (SPPs) of graphene. They excite the modes of insulating VO2 in the forward-biased scenario by forming strongly coupled modes between graphene and VO2 and thus dramatically enhance the heat flux. However, for the reverse-biased scenario, the VO2 is at its metallic state, and thus, graphene SPPs cannot work by three-body photon thermal tunneling. Furthermore, the improvement was also investigated for different chemical potentials of graphene and geometric parameters of the three-body system. Our findings demonstrate the feasibility of using thermal-photon-based logical circuits, creating radiation-based communication technology and implementing thermal management approaches at the nanoscale.

4.
Org Lett ; 25(16): 2883-2888, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37052454

RESUMO

A direct C(sp3)-H sulfinylation reaction of alkanes with sulfinyl sulfones via decatungstate photocatalysis is reported. The sulfinyl sulfones generated in situ from sulfinates in the presence of an acylating reagent were able to trap the alkyl radicals that were produced via the photoinduced direct hydrogen atom transfer of alkanes, leading to a range of sulfoxides. This radical sulfinylation process provides an efficient and concise method for the synthesis of sulfoxides from abundant alkanes under mild conditions. Using the same strategy, aldehydes can also be transferred to the corresponding sulfoxides via decarbonylative sulfinylation.

5.
Metabolites ; 12(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557292

RESUMO

Sugar metabolism influences the quality of sweet corn (Zea mays var. saccharate Sturt) kernels, which is a major goal for maize breeding. In this study, the genome-wide transcriptomes from two supersweet corn cultivars (cv. Xuetian 7401 and Zhetian 11) with a nearly two-fold difference in kernel sugar content were carried out to explore the genes related to kernel sugar metabolism. In total, 45,748 differentially expressed genes (DEGs) in kernels and 596 DEGs in leaves were identified. PsbS, photosynthetic system II subunit S, showed two isoforms with different expression levels in leaf tissue between two cultivars, indicating that this gene might influence sugar accumulation in the kernel. On the other hand, hexokinases and beta-glucosidase genes involved in glycolysis, starch and sucrose metabolism were found in developing kernels with a genome-wide transcriptome analysis of developing kernels, which might contribute to the overaccumulation of water-soluble polysaccharides and an increase in the sweetness in the kernels of Xuetian 7401. These results indicated that kernel sugar accumulation in sweet corn might be influenced by both photosynthesis efficiency and the sugar metabolism rate. Our study supplied a new insight for breeding new cultivars with high sugar content and laid the foundation for exploring the regulatory mechanisms of kernel sugar content in corn.

6.
Microorganisms ; 10(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35889037

RESUMO

Maize (Zea mays L.) is an important crop in the world and maize sheath blight damages the yield and quality greatly. In this study, an antagonist strain, which exhibited antagonism against pathogenic fungi of maize and controlled maize banded leaf sheath blight in the field, was effectively isolated and named Paenibacillus polymyxa strain SF05. High cellulase and chitinase activity of the strain were detected in this study, which might contribute to degrading the cell wall of fungi. Furthermore, different resistant genes such as ZmPR1a, OPR1 and OPR7 were elicited differently by the strain in the leaves and stems of maize. In order to explain the biocontrol mechanism of P. polymyxa strain SF05, the genome was sequenced and then the genes involving the biocontrol mechanism including biofilm formation pathways genes, cell wall degradation enzymes, secondary metabolite biosynthesis gene clusters and volatile organic compounds biosynthesis genes were predicted. The study revealed the biocontrol mechanism of P. polymyxa strain SF05 preliminary and laid a foundation for further research of biocontrol mechanism of P. polymyxa.

7.
Phys Rev E ; 105(6-2): 065304, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854602

RESUMO

In this work, a two-dimensional droplet confined between two parallel electrodes under the combined effects of a nonuniform electric field and unipolar charge injection is numerically investigated using the lattice Boltzmann method (LBM). Under the non-Ohmic regime, the interfacial tension and electric forces at the droplet surface cooperate with the volumetric Coulomb force, leading to complex deformation and motion of the droplet while at the same time inducing a bulk electroconvective flow. After we validate the model by comparing with analytical solutions at the hydrostatic state, we perform a quantitative analysis on the droplet deformation factor D and bulk flow stability criteria T_{c} under different parameters, including the electric capillary number Ca, the electric Rayleigh number T, the permittivity ratio ɛ_{r}, and the mobility ratio K_{r}. It is found that the bulk flow significantly modifies the magnitude of D, which in turn decreases T_{c} of the electroconvective flow. For a droplet repelled by the anode, ɛ_{r}>1, an interesting linear relationship can be observed in the D-Ca curves. However, for a droplet attracted to the anode, ɛ_{r}<1, the system is potentially unstable. After first evolving into a quasisteady state, the droplet successively experiences steady flow, periodic flow, second steady flow, and oscillatory flow with increasing T. Moreover, discontinuities can be observed in the D-T curves due to the transitions of bulk flow.

8.
RSC Adv ; 10(21): 12582-12597, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497614

RESUMO

Regarding the trend of hydrogen-powered fuel cell engine development, hydrogen fuel is undisputedly the next generation renewable and sustainable energy carrier. The steam reforming of methane (SRM) is a field-proven technology for efficient hydrogen production. However, producing low-carbon hydrogen is the most technical challenge related to available hydrogen production technologies. This paper investigated the process analysis of SRM for low-carbon hydrogen production using concentrated solar energy as a heat source. Analysis of the solar SRM is carried out considering the reformate gas and their influencing factors. The operating temperature of 200-1000 °C and the pressure of 1.02-30 bar were considered when the mass ratio of steam-to-methane in feed gas was varied from 1.0 to 4.0. It was found that the composition of reformate gas, hydrogen yield, methane and steam conversion rate, the thermal efficiency of reforming reactor, and volume flow of reformate gas are significantly affected by the operating parameters including temperature, pressure, and the mass ratio of feed gas. Carbon content in the yield of hydrogen produced can be limited by considering the water-gas shift reaction in the SRM process. Besides, the centralized tower type solar concentrating system is selected as the heat source of the SRM process. The effect of solar radiation on the operation performance of the solar SRM process was analyzed. Direct normal irradiation is a key factor affecting the operating performance of the solar SRM process.

9.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514430

RESUMO

Microlens array (MLA) errors in plenoptic cameras can cause the confusion or mismatching of 4D spatio-angular information in the image space, significantly affecting the accuracy and efficiency of target reconstruction. In this paper, we present a high-accuracy correction method for light fields distorted by MLA errors. Subpixel feature points are extracted from the microlens subimages of a raw image to obtain correction matrices and perform registration of the corresponding subimages at a subpixel level. The proposed method is applied for correcting MLA errors of two different categories in light-field images, namely form errors and orientation errors. Experimental results show that the proposed method can rectify the geometric and intensity distortions of raw images accurately and improve the quality of light-field refocusing. Qualitative and quantitative comparisons between images before and after correction verify the performance of our method in terms of accuracy, stability, and adaptability.

10.
Opt Express ; 27(15): 21173-21184, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510199

RESUMO

Magnetic polariton is a significant mode in tailoring thermal radiative properties with micro/nanostructures metamaterials and can be explained by equivalent inductor-capacitor circuit model. However, the equivalent inductor-capacitor circuit model is out of operation when the magnetic polariton resonance frequency is close to the surface plasmon polariton excitation frequency and cases of oblique incidence. In this work, we present a mutual inductor-inductor-capacitor circuit model to describe magnetic polariton resonance conditions. The mechanism of coupling between the surface plasmon polariton and magnetic polariton is explained from the perspective of equivalent circuits. The interaction between the surface plasmon polariton and magnetic polariton is studied and considered as a mutual inductance in the MLC circuit model. This model is still applicable in the case of oblique incidence. Slit arrays with different geometric parameters and incident angles are calculated to verify the rationality of the mutual inductor-inductor-capacitor circuit model. This study may allow us to predict features and parameters and achieve tailoring of the thermal radiative properties of the micro/nano-structures metamaterials.

11.
Phys Rev E ; 100(1-1): 013306, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499901

RESUMO

Melting in the presence of electrohydrodynamic (EHD) flow driven by the Coulomb force in dielectric phase change material is numerically studied. A model is developed for the EHD flow in the solid-liquid phase change process. The fully coupled equations including mechanical equations, electrical equations, energy equations, and the continuity equations in the solid-liquid interface are solved using a unified lattice Boltzmann model (LBM). Firstly, the numerical model is validated by several cases in the hydrostatic state, and all LBM results are found to be highly consistent with analytical solutions. Besides, our LBM code is able to reproduce the step changes in the distribution of charge density and electric field due to the discontinuous distribution of physical properties at the interface. Then, a systematical investigation is conducted on various nondimensional parameters, including electric Rayleigh number T, Prandtl number Pr, and Stefan number St. Results are presented for the transient evolutions of temperature, fluid flow, charge density fields, and liquid fraction. Four flow stages in the melting process together with three kinds of flow instabilities are observed. It is found that the electric field has significant influence on the melting, especially at high T and Pr and low St. Over the tested cases, a maximum melting time saving of around 50% is found.

12.
Appl Opt ; 57(30): 9046-9052, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30461893

RESUMO

Bidirectional reflectance distribution functions (BRDFs) are of importance for their wide applications. In this study, we presented a simple and fast approach to measure the spectral BRDF of both solid and liquid samples. Based on this approach, we fabricated a prototype and measured the BRDF value of some liquid samples such as water and NaCl solution at different wavelengths. According to the experimental data, we discussed the trend of the BRDF value of the NaCl solution of different concentrations. Then, the experimental data of the different NaCl solution at 637 nm were used to invert the parameters of a five-parameter model. Additionally, we fitted the parameters as a polynomial.

13.
J Environ Sci (China) ; 74: 50-57, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30340674

RESUMO

Aerosol plays a key role in determining radiative balance, regional climate and human health. Severe air pollution over Northeast China in recent years urges more comprehensive studies to figure out the adverse effects caused by excessive aerosols. In this study, column aerosol measurements over urban Harbin, a metropolis located at the highest latitude in Northeast China, during May 2016 to March 2017 were conducted using a CIMEL sun-photometer to analyze local aerosol properties and its variation from different aspects. According to the observations, aerosol optical depth at 440nm (AOD440) ranges from 0.07 up to 1.54, and the large variability in both AOD440 and Angstrom Exponent (AE440-870) indicates the frequent change of aerosol types due of different emission sources. Coarse mode particles dominated Harbin during the studying period because of the long-range transported dust and probably the suspended snow crystals in winter. As the wavelength increases, relatively consistent decrease trends of single scattering albedo (SSA) and asymmetry factor (ASY) were observed in spring, autumn, and winter, indicating the presence of absorbing polluted aerosols. Mixed type (MIX) aerosol dominated the study region with a total percentage of 34%, and biomass burning and urban industry (BB/UI), clean continental (CC), and desert dust (DD) aerosols were found to be 31%, 27%, and 8%, respectively. The current work fills up the optical characteristics of aerosols in Harbin, and will contribute to the in-depth understanding of local aerosol variation and regional climate change over Northeast China.


Assuntos
Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Fenômenos Ópticos , Fotometria/instrumentação , Luz Solar , Aerossóis , China
14.
Appl Opt ; 57(25): 7259-7265, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182987

RESUMO

We propose a novel flame temperature estimation method based on a flame light field sectioned imaging model of complex temperature distribution in different media. The proposed method relies on multi-pixel reconstruction to improve the resolution of sub-aperture images. In addition, the wavelet transform denoises the flame refocused image, and then the Lucy-Richardson algorithm deconvolves the image. The temperature estimation accuracy using the proposed method is higher than that reported in a previous work, with a larger temperature estimation range from 1250 K to 1800 K. Moreover, we found that deconvolution plays an important role in determining the temperature estimation accuracy.

15.
Opt Express ; 26(14): 18230-18237, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114103

RESUMO

This work designs a graphene/hBN/Al grating anisotropic hybrid structure. Formed by strong coupling between plasmonic Magnetic polaritons (MPs) in the metal grating and phonon-plasmon polaritons, hybrid hyperbolic phonon-plasmon polaritons in the graphene/hBN film have been excited, resulting in three sharp, high absorption peaks, which are 0.75, 0.97 and 0.97, formed at 5.92 µm, 6.32 µm, and 7.64 µm respectively. The absorption mechanisms have been theoretically analyzed. Local electromagnetic field and power dissipation density are depicted for further elucidating the underlying mechanisms. The different structural parameters and chemical potential, which affect the absorption peak were discussed. These numerical results can provide potential application in the field of optical detection and optoelectronic.

16.
Phys Rev E ; 97(6-1): 063302, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011437

RESUMO

The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

17.
Sensors (Basel) ; 18(7)2018 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-29937502

RESUMO

A plenoptic cameras is a sensor that records the 4D light-field distribution of target scenes. The surface errors of a microlens array (MLA) can cause the degradation and distortion of the raw image captured by a plenoptic camera, resulting in the confusion or loss of light-field information. To address this issue, we propose a method for the local rectification of distorted images using white light-field images. The method consists of microlens center calibration, geometric rectification, and grayscale rectification. The scope of its application to different sized errors and the rectification accuracy of three basic surface errors, including the overall accuracy and the local accuracy, are analyzed through simulation of imaging experiments. The rectified images have a significant improvement in quality, demonstrating the provision of precise light-field data for reconstruction of real objects.

18.
Opt Express ; 25(16): A722-A741, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041042

RESUMO

Nanoparticle is a promising candidate for large scale fabrication of metamaterial. However, optical responses for metamaterial made of abound metal like Al can be thoroughly changed due to oxidization. Especially for nanoparticle whose aspect ratio is extremely high, oxidation usually occurs. So to understand how the responses shift in a nanoparticle system due to oxidization is essential for large scale application of metamaterial. In this paper, we have concluded and quantified two general principles describing this transition in a monolayer Al-Al2O3 nanoparticle-crystal, which can be used in a thermophotovoltaic system. Square pattern, in which the unit of changing crystal is a square cell made up of Al and Al2O3 particles, is firstly demonstrated. A double oscillators model has been proposed to understand the interference between different absorption modes and their coupling. Using near-field distribution, equivalent inductor-capacitor model and dispersion relationship of surface Plasmon polariton, we have distinguished the resonance modes, concluded the transition principles in a simple case. Then the two principles are applied in a larger cell to verify its university. After detailed demonstration of symmetric square pattern, models and principles are extrapolated to more complex non-symmetric systems. The basic understanding gained here will help the design of robust large-scale metamaterial.

19.
Opt Express ; 25(13): 14621-14634, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789046

RESUMO

Transient/time-dependent radiative transfer in a two-dimensional scattering medium is numerically solved by the discontinuous finite element method (DFEM). The time-dependent term of the transient vector radiative transfer equation is discretized by the second-order central difference scheme and the space domain is discretized into non-overlapping quadrilateral elements by using the discontinuous finite element approach. The accuracy of the transient DFEM model for the radiative transfer equation considering the polarization effect is verified by comparing the time-resolved Stokes vector component distributions against the steady solutions for a polarized radiative transfer problem in a two-dimensional rectangular enclosure filled with a scattering medium. The transient polarized radiative transfer problems in a scattering medium exposed to an external beam and in an irregular emitting medium are solved. The distributions of the time-resolved Stokes vector components are presented and discussed.

20.
Opt Express ; 25(14): 16400-16408, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789144

RESUMO

Monolayer graphene has poor absorption in the near-infrared region. Its layer is only as thick as a single atom so it cannot have a high absorptivity. In this paper, in order to form a hybrid system, the absorption characteristics of monolayer graphene covering a metal/dielectric/metal substrate has been theoretically analyzed. The magnetic polaritons in the metal/dielectric couple with the plasmonic resonance in the graphene to dramatically enhance the graphene absorptivity. This study analyzes the factors that enhance the absorptivity, including the geometric parameters and the relative positions of the graphene. The local electromagnetic field and the power dissipation density are illustrated to explain the underlying mechanisms further. These numerical results can provide potential application in the field of optical detection and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...