Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250728

RESUMO

Background: Pepper (Capsicum annuum L.) is a valuable horticultural crop with economic significance, and its purple fruit color is attributed to anthocyanin, a phytonutrient known for its health-promoting benefits. However, the mechanisms regulating anthocyanin biosynthesis in pepper have yet to be fully elucidated. Methods: RNA sequencing (RNA-seq) was utilized to analyze the transcriptome of fruits from three purple-fruited varieties (HN191, HN192, and HN005) and one green-fruited variety (EJT) at various developmental stages. To determine the relationships between samples, Pearson correlation coefficients (PCC) and principal component analysis (PCA) were calculated. Differential expression analysis was performed using the DESeq2 package to identify genes that were expressed differently between two samples. Transcription factors (TF) were predicted using the iTAK program. Heatmaps of selected genes were generated using Tbtools software. Results: The unripe fruits of HN191, HN192, and HN005, at the stages of 10, 20, and 30 days after anthesis (DAA), display a purple color, whereas the unripe fruits of variety EJT remain green. To understand the molecular basis of this color difference, five transcriptome comparisons between green and purple fruits were conducted: HN191-10 vs EJT-10, HN191-20 vs EJT-20, HN191-30 vs EJT-30, HN192-30 vs EJT-30, and HN005-30 vs EJT-30. Through this analysis, 503 common differentially expressed genes (DEGs) were identified. Among these DEGs, eight structural genes related to the anthocyanin biosynthesis pathway and 24 transcription factors (TFs) were detected. Notably, one structural gene (MSTRG.12525) and three TFs (T459_25295, T459_06113, T459_26036) exhibited expression patterns that suggest they may be novel candidate genes involved in anthocyanin biosynthesis. These results provide new insights into the regulation of anthocyanin biosynthesis in purple pepper fruit and suggest potential candidate genes for future genetic improvement of pepper germplasm with enhanced anthocyanin accumulation.


Assuntos
Frutas , Piper nigrum , Frutas/genética , Antocianinas/genética , Genes Reguladores , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
2.
Biology (Basel) ; 11(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36101407

RESUMO

The lack of high-quality juvenile crabs is the greatest impediment to the growth of the mud crab (Scylla paramamosain) industry. To obtain high-quality hybrid offspring, a novel hybrid mud crab (S. serrata ♀ × S. paramamosain ♂) was successfully produced in our previous study. Meanwhile, an interesting phenomenon was discovered, that some first-generation (F1) hybrid offspring's eyestalks were displaced during the crablet stage I. To uncover the genetic mechanism underlying eyestalk displacement and its potential implications, both single-molecule real-time (SMRT) and Illumina RNA sequencing were implemented. Using a two-step collapsing strategy, three high-quality reconstructed transcriptomes were obtained from purebred mud crabs (S. paramamosain) with normal eyestalks (SPA), hybrid crabs with normal eyestalks (NH), and hybrid crabs with displaced eyestalks (DH). In total, 37 significantly differential alternative splicing (DAS) events (17 up-regulated and 20 down-regulated) and 1475 significantly differential expressed transcripts (DETs) (492 up-regulated and 983 down-regulated) were detected in DH. The most significant DAS events and DETs were annotated as being endoplasmic reticulum chaperone BiP and leucine-rich repeat protein lrrA-like isoform X2. In addition, the top ten significant GO terms were related to the cuticle or chitin. Overall, high-quality reconstructed transcriptomes were obtained for the novel interspecific hybrid crab and provided valuable insights into the genetic mechanisms of eyestalk displacement in mud crab (Scylla spp.) crossbreeding.

3.
Plants (Basel) ; 11(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736753

RESUMO

Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.

4.
Genes (Basel) ; 13(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741717

RESUMO

Cadmium (Cd) accumulation in lettuce causes a large amount of yield loss during industry. Although many studies report that exogenous melatonin helps to alleviate the Cd stress of lettuce, the molecular mechanism for how plant tissue responds to Cd treatment is unclear. Herein, we applied both PacBio and Illumina techniques for Italian lettuce under different designed treatments of Cd and melatonin, aiming to reveal the potential molecular pathway of the response to Cd stress as well as the how the pre-application of exogenous melatonin affect this process. This result reveals that the root has the biggest expression pattern shift and is a more essential tissue to respond to both Cd and melatonin treatments than leaves. We reveal the molecular background of the Cd stress response in prospects of antioxidant and hormone signal transduction pathways, and we found that their functions are diverged and specifically expressed in tissues. We also found that candidate genes related to melatonin detoxify during Cd stress. Our study sheds new light for future research on how melatonin improves the cadmium resistance of lettuce and also provide valuable data for lettuce breeding.


Assuntos
Lactuca , Melatonina , Cádmio/metabolismo , Cádmio/toxicidade , Lactuca/genética , Melatonina/farmacologia , Melhoramento Vegetal , Transcriptoma
5.
PeerJ ; 10: e13167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35341039

RESUMO

Background: Low temperature is a type of abiotic stress that threatens the growth and yield of asparagus bean. However, the key genes and regulatory pathways involved in low temperature response in this legume are still poorly understood. Methodology. The present study analyzed the transcriptome of seedlings from two asparagus bean cultivars-Dubai bean and Ningjiang 3-using Illumina RNA sequencing (RNA-seq). Correlations between samples were determined by calculating Pearson correlation coefficients (PCC) and principal component analysis (PCA). Differentially expressed genes (DEGs) between two samples were identified using the DESeq package. Transcription factors (TF) prediction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were also performed. Results: Phenotypes and physiological indices indicated that Ningjiang 3 seedlings tolerated cold better than Dubai bean seedlings, in contrast to adult stage. The transcriptome dynamics of the two cultivars were closely compared using Illumina RNA-seq following 0, 3, 12, and 24 h of cold stress at 5 °C and recovery for 3 h at 25 °C room temperature. Global gene expression patterns displayed relatively high correlation between the two cultivars (>0.88), decreasing to 0.79 and 0.81, respectively, at 12 and 24 h of recovery, consistent with the results of principal component analysis. The major transcription factor families identified from differentially expressed genes between the two cultivars included bHLH, NAC, C2H2, MYB, WRKY, and AP2/ERF. The representative GO enrichment terms were protein phosphorylation, photosynthesis, oxidation-reduction process, and cellular glucan metabolic process. Moreover, KEGG analysis of DEGs within each cultivar revealed 36 transcription factors enriched in Dubai bean and Ningjiang 3 seedlings under cold stress. Conclusions: These results reveal new information that will improve our understanding of the molecular mechanisms underlying the cold stress response of asparagus bean and provide genetic resources for breeding cold-tolerant asparagus bean cultivars.


Assuntos
Fabaceae , Transcriptoma , Transcriptoma/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Fabaceae/genética , Fatores de Transcrição/genética , Resposta ao Choque Frio/genética , Plântula/genética
6.
Front Plant Sci ; 13: 1059804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589110

RESUMO

Asparagus bean (Vigna unguiculata ssp. sesquipedialis) is an important cowpea subspecies. We assembled the genomes of Ningjiang 3 (NJ, 550.31 Mb) and Dubai bean (DB, 564.12 Mb) for comparative genomics analysis. The whole-genome duplication events of DB and NJ occurred at 64.55 and 64.81 Mya, respectively, while the divergence between soybean and Vigna occurred in the Paleogene period. NJ genes underwent positive selection and amplification in response to temperature and abiotic stress. In species-specific gene families, NJ is mainly enriched in response to abiotic stress, while DB is primarily enriched in respiration and photosynthesis. We established the pan-genomes of four accessions (NJ, DB, IT97K-499-35 and Xiabao II) and identified 20,336 (70.5%) core genes present in all the accessions, 6,507 (55.56%) variable genes in two individuals, and 2,004 (6.95%) unique genes. The final pan genome is 616.35 Mb, and the core genome is 399.78 Mb. The variable genes are manifested mainly in stress response functions, ABC transporters, seed storage, and dormancy control. In the pan-genome sequence variation analysis, genes affected by presence/absence variants were enriched in biological processes associated with defense responses, immune system processes, signal transduction, and agronomic traits. The results of the present study provide genetic data that could facilitate efficient asparagus bean genetic improvement, especially in producing cold-adapted asparagus bean.

7.
BMC Genomics ; 22(1): 372, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34016054

RESUMO

BACKGROUND: Phytophthora capsici root rot (PRR) is a disastrous disease in peppers (Capsicum spp.) caused by soilborne oomycete with typical symptoms of necrosis and constriction at the basal stem and consequent plant wilting. Most studies on the QTL mapping of P. capsici resistance suggested a consensus broad-spectrum QTL on chromosome 5 named Pc.5.1 regardless of P. capsici isolates and resistant resources. In addition, all these reports proposed NBS-ARC domain genes as candidate genes controlling resistance. RESULTS: We screened out 10 PRR-resistant resources from 160 Capsicum germplasm and inspected the response of locus Pc.5.1 and NBS-ARC genes during P. capsici infection by comparing the root transcriptomes of resistant pepper 305R and susceptible pepper 372S. To dissect the structure of Pc.5.1, we anchored genetic markers onto pepper genomic sequence and made an extended Pc5.1 (Ext-Pc5.1) located at 8.35 Mb-38.13 Mb on chromosome 5 which covered all Pc5.1 reported in publications. A total of 571 NBS-ARC genes were mined from the genome of pepper CM334 and 34 genes were significantly affected by P. capsici infection in either 305R or 372S. Only 5 inducible NBS-ARC genes had LRR domains and none of them was positioned at Ext-Pc5.1. Ext-Pc5.1 did show strong response to P. capsici infection and there were a total of 44 differentially expressed genes (DEGs), but no candidate genes proposed by previous publications was included. Snakin-1 (SN1), a well-known antimicrobial peptide gene located at Pc5.1, was significantly decreased in 372S but not in 305R. Moreover, there was an impressive upregulation of sugar pathway genes in 305R, which was confirmed by metabolite analysis of roots. The biological processes of histone methylation, histone phosphorylation, DNA methylation, and nucleosome assembly were strongly activated in 305R but not in 372S, indicating an epigenetic-related defense mechanism. CONCLUSIONS: Those NBS-ARC genes that were suggested to contribute to Pc5.1 in previous publications did not show any significant response in P. capsici infection and there were no significant differences of these genes in transcription levels between 305R and 372S. Other pathogen defense-related genes like SN1 might account for Pc5.1. Our study also proposed the important role of sugar and epigenetic regulation in the defense against P. capsici.


Assuntos
Capsicum , Phytophthora , Capsicum/genética , Resistência à Doença/genética , Dissecação , Epigênese Genética , Genes vpr , Doenças das Plantas/genética
8.
Chem Commun (Camb) ; 56(14): 2182-2185, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31971168

RESUMO

A green route modulated by the addition of CaCl2 during the potassium compound-assisted synthesis is developed for the first time for the synthesis of nitrogen-rich hierarchical porous carbon (NRHPC) with high external surface area and moderate total pore volume. The NRHPCN constructed by nanosheets is capable of simultaneously achieving high gravitational and volumetric capacity for supercapacitors (SCs).

9.
Genomics ; 112(1): 404-411, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851358

RESUMO

In this study, we first identified male-specific SNP markers using restriction site-associated DNA sequencing, and further developed a PCR-based sex identification technique for Charybdis feriatus. A total of 296.96 million clean reads were obtained, with 114.95 and 182.01 million from females and males. After assembly and alignment, 10 SNP markers were identified being heterozygous in males but homozygous in females. Five markers were further confirmed to be male-specific in a large number of individuals. Moreover, two male-specific sense primers and a common antisense primer were designed, using which, a PCR-based genetic sex identification method was successfully developed and used to identify the sex of 103 individuals, with a result of 49 females and 54 males. The presence of male-specific SNP markers suggests an XX/XY sex determination system for C. feriatus. These findings should be helpful for better understanding sex determination mechanism, and drafting artificial breeding program in crustaceans.


Assuntos
Braquiúros/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Análise para Determinação do Sexo/métodos , Animais , Feminino , Marcadores Genéticos , Masculino , Análise de Sequência de DNA
10.
Theor Appl Genet ; 133(1): 353-364, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31676958

RESUMO

KEY MESSAGE: Gr5.1 is the major locus for cauliflower green curd color and mapped to an interval of 236 Kbp with four most likely candidate genes. Cauliflower with colored curd enhances not only the visual appeal but also the nutritional value of the crop. Green cauliflower results from ectopic development of chloroplasts in the normal white curd. However, the underlying genetic basis is unknown. In this study, we employed QTL-seq analysis to identify the loci that were associated with green curd phenotype in cauliflower. A F2 population was generated following a cross between a white curd (Stovepipe) and a green curd (ACX800) cauliflower plants. By whole-genome resequencing and SNP analysis of green and white F2 bulks, two QTLs were detected on chromosomes 5 (Gr5.1) and 7 (Gr7.1). Validation by traditional genetic mapping with CAPS markers suggested that Gr5.1 represented a major QTL, whereas Gr7.1 had a minor effect. Subsequent high-resolution mapping of Gr5.1 in the second large F2 population with additional CAPS markers narrowed down the target region to a genetic and physical distance of 0.3 cM and 236 Kbp, respectively. This region contained 35 genes with four of them representing the best candidates for the green curd phenotype in cauliflower. They are LOC106295953, LOC106343833, LOC106345143, and LOC106295954, which encode UMP kinase, DEAD-box RNA helicase 51-like, glutathione S-transferase T3-like, and protein MKS1, respectively. These findings lay a solid foundation for the isolation of the Gr gene and provide a potential for marker-assisted selection of the green curd trait in cauliflower breeding. The eventual isolation of Gr will also facilitate better understanding of chloroplast biogenesis and development in plants.


Assuntos
Brassica/genética , Mapeamento Cromossômico , Genes de Plantas , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Fenótipo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
11.
J Colloid Interface Sci ; 537: 475-485, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469116

RESUMO

Nitrogen-doped porous carbons have been extensively investigated to improve the specific capacitance in aqueous electrolytes by increasing the specific surface area and nitrogen content and by optimizing the pore structure. However, research on the effect of electrolyte cations on the specific capacitance of these materials is rare, especially for neutral electrolytes. Herein, a nitrogen-rich hierarchically porous carbon (NRHPC) with a high nitrogen content of 12.3 atm% is successfully prepared by pyrolyzing a mixture of bagasse, K2CO3 and urea in a mass ratio of 2:1:4. It is found that NRHPC shows superior electrochemical performance in MgSO4 than in Li2SO4 electrolyte, with specific capacitances of 315.0, 274.4, and 188.1 F g-1 at 1.0, 10.0, and 100 A g-1, respectively. Furthermore, it is found that the capacitance enhancement is closely related to the nitrogen content of the porous carbon materials. Theoretical calculation reveals that the Mg2+ ions have higher affinity towards the N atoms than Li+, producing higher charge storage capability via interaction between the Mg2+ and N atoms. When the 1.0 M MgSO4 is used as electrolyte, a symmetric capacitor based on the nitrogen-rich hierarchically porous carbon shows a high energy density of 39.5 Wh kg-1 at a power density of 0.9 kW kg-1. Moreover, this as-assembled device displays superior long-term cycling stability, with a capacitance retention of >96.2% after 10,000 cycles at 10.0 A g-1.


Assuntos
Carbono/química , Sulfato de Magnésio/química , Nitrogênio/química , Água/química , Biomassa , Eletrólitos/química , Tamanho da Partícula , Porosidade , Eliminação de Resíduos , Propriedades de Superfície
12.
Environ Sci Pollut Res Int ; 25(30): 30671-30679, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30178407

RESUMO

The effects of application of straw derived from cadmium (Cd) accumulator plants (Siegesbeckia orientalis, Conyza canadensis, Eclipta prostrata, and Solanum photeinocarpum) on growth and Cd accumulation of lettuce plants grown under Cd exposure were studied. Treatment with straw of the four Cd-accumulator species promoted growth, photosynthesis, and soluble protein contents and enhanced the activities of peroxidase in leaves of lettuce seedlings. The biomass of shoot of lettuce from high to low in turn is the treatment of C. canadensis straw > S. photeinocarpum straw > S. orientalis > E. prostrata > Control. The Cd content in edible parts (shoots) of the lettuce plants was significantly decreased in the presence of straw from the Cd-accumulator species, except the presence of the straw of E. prostrata. And, the greatest reduction in Cd content in shoots was 27.09% in the S. photeinocarpum straw treatment compared with that of the control. Therefore, application of straw of S. orientalis, C. canadensis, and S. photeinocarpum can promote the growth of lettuce seedlings, and decrease their Cd accumulation, when grown in Cd-contaminated soil, which is beneficial for production of lettuce safe for human consumption.


Assuntos
Cádmio/metabolismo , Lactuca/metabolismo , Fotossíntese , Caules de Planta/química , Asteraceae/química , Asteraceae/metabolismo , Biomassa , Cádmio/análise , Produção Agrícola , Lactuca/química , Lactuca/enzimologia , Lactuca/crescimento & desenvolvimento , Peroxidase/metabolismo , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solanum/química , Solanum/metabolismo
13.
Sci Rep ; 8(1): 4836, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555986

RESUMO

Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.


Assuntos
Mapeamento Cromossômico , Genômica , Vigna/genética , Marcadores Genéticos/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência
14.
Mitochondrial DNA B Resour ; 3(1): 157-158, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33474103

RESUMO

The complete mitochondrial genome of Matuta planipes was obtained using long and conventional PCR method. The circular genome was 15,760 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a control region. Of the 37 genes, 23 were encoded by the heavy strand, while the others were encoded by the light strand. The genome composition with A + T bias (70.82%) and gene arrangement were largely identical to those observed in most arthropods, such as the mud crab (Scylla paramamosain). The phylogenetic analysis suggested that M. planipes was closest to Ashtoret lunaris. The newly described mitochondrial genome may provide valuable data for phylogenetic analysis for Matutidae.

15.
Mitochondrial DNA B Resour ; 3(1): 200-201, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33474117

RESUMO

The complete mitochondrial genome sequence plays an important role in phylogenetic studies. In this study, the complete mitochondrial genome of Monomia gladiator was obtained by Illumina and Sanger sequencing techniques. The circular genome was 15,878 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a putative control region. This whole mitogenome composition was 33.32% for A, 35.69% for T, 11.75% for G, and 19.24% for C, respectively. The phylogenetic analysis suggested that M. gladiator was genetically closest to three Portunidae species (Charybdis japonica, C. feriata and Thalamita crenata). The newly described mitogenome may facilitate the phylogenetic studies on Portunidae crabs.

16.
Mitochondrial DNA B Resour ; 3(1): 263-264, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33474136

RESUMO

The complete mitochondrial genome plays an important role in the research on phylogenetic relationship. Here, we reported the first complete mitochondrial genome sequence of Varuna yui Hwang & Takeda, 1986 (Varunidae). The complete mtDNA (15,915 bp in length) consisted of 13 protein-coding genes, 22 tRNAs, two rRNA genes, and a control region. The gene arrangement was identical to those observed in the Varunidae species. The phylogenetic analysis suggested that V. yui had close relationship with other Varunidae species (Helicetient sinensis, Eriocher sinesis, etc.). The newly described genome may facilitate further comparative mitogenomic analysis within Varunidae species.

17.
Mitochondrial DNA B Resour ; 3(1): 397-398, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33474181

RESUMO

The complete mitochondrial genome sequence of Atergatis integerrimus from China has been amplified and sequenced in this study. The mitogenome assembly was found to be 15,924 bp in length with base composition of A (32.88%), G (10.58%), C (20.87%), T (35.66%), A + T (68.54%), and G + C (31.46%). It contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region. The phylogenetic position was constructed and the A. integerrimus was closely clustered with Pseudocarcinus gigas and Leptodius sanguineus. The complete mitochondrial genome sequence would be useful for further understanding the evolution of A. integerrimus.

18.
Mitochondrial DNA B Resour ; 3(2): 1019-1020, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33474399

RESUMO

To understand the evolution of the swimming crab Thalamita crenata, the complete mitochondrial genome of T. crenata from China was sequenced and analyzed. The circular mitogenome sequence was 15,787 bp in length, made up of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a control region. The overall mitogenome composition was 34.40% for A, 11.55% for G, 35.31% for T, and 18.74% for C, respectively, with a high A + T content of 69.71%. Phylogenetic analysis showed that T. crenata was closest to the genus Charybdis.

19.
Mitochondrial DNA B Resour ; 3(2): 1244-1245, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33474478

RESUMO

The mitochondrial genome plays an important role in studies on phylogeography and population genetic diversity. Here we report the complete mitochondrial genome of Lupocycloporus gracilimanus (Stimpson, 1858) which is the first mitochondrial genome reported in genus Lupocycloporus by now. The mitogenome is 15,990 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. The phylogenetic analysis showed that L. gracilimanus was closest to genus Scylla. The present research should provide valuable information for phylogenetic analysis and classification of Portunidae.

20.
Mitochondrial DNA B Resour ; 3(1): 368-369, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33490509

RESUMO

In this study, we sequenced and analyzed the whole mitochondrial genome of Metopograpsus frontalis Miers, 1880 (Decapoda, Grapsidae). The circular genome is 15,587 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, as well as a control region. Both atp8/atp6 and nad4L/nad4 share 7 nucleotides in their adjacent overlapping region, which is identical to those observed in other Grapsidae crabs. The genome composition and gene order follow a classic crab-type arrangement regulation. The phylogenetic analysis suggested that Grapsidae crabs formed a solid monophyletic group. The newly described mitochondrial genome may provide genetic marker for studies on phylogeny of the grapsid crabs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...