Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735931

RESUMO

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Assuntos
Ouro , Grafite , Estresse Oxidativo , Pontos Quânticos , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas , Óxido de Zinco , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Ouro/química , Grafite/química , Óxido de Zinco/química , Animais , Pontos Quânticos/química , Camundongos , Nanopartículas Metálicas/química , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Elétrons
2.
Small ; : e2401147, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770990

RESUMO

Cuproptosis, a recently discovered copper-dependent cell death, presents significant potential for the development of copper-based nanoparticles to induce cuproptosis in cancer therapy. Herein, a unique ternary heterojunction, denoted as HACT, composed of core-shell Au@Cu2O nanocubes with surface-deposited Titanium Dioxide quantum dots and modified with hyaluronic acid is introduced. Compared to core-shell AC NCs, the TiO2/Au@Cu2O exhibits improved energy structure optimization, successfully separating electron-hole pairs for redox use. This optimization results in a more rapid generation of singlet oxygen and hydroxyl radicals triggering oxidative stress under ultrasound radiation. Furthermore, the HACT NCs initiate cuproptosis by Fenton-like reaction and acidic environment, leading to the sequential release of cupric and cuprous ions. This accumulation of copper induces the aggregation of lipoylated proteins and reduces iron-sulfur proteins, ultimately initiating cuproptosis. More importantly, HACT NCs show a tendency to selectively target cancer cells, thereby granting them a degree of biosecurity. This report introduces a ternary heterojunction capable of triggering both cuproptosis and oxidative stress-related combination therapy in a stimulus-responsive manner. It can energize efforts to develop effective melanoma treatment strategies using Cu-based nanoparticles through rational design.

3.
Microb Cell Fact ; 22(1): 255, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087285

RESUMO

BACKGROUND: Uridyl peptide compounds are renowned as a subclass of nucleoside antibiotics for their highly specific antibacterial activity against Gram-negative bacteria and the unique target of action. We previously activated the biosynthetic gene cluster of a uridyl peptide antibiotic, mureidomycin, in Streptomyces roseosporus NRRL 15998 by introducing an exogenous positive regulator gene ssaA, and the generated strain was designated as Sr-hA. This study aims to further explore mureidomycin analogs from Sr-hA as well as the collaborative roles of two wide-spread genes, SSGG-02980 and SSGG-03002 encoding putative nuclease/phosphatase and oxidoreductase respectively, in mureidomycin diversification. RESULTS: In order to understand how SSGG-02980 and SSGG-03002 contribute to mureidomycin biosynthesis, the gene disruption mutants and complementary strains were constructed. Mass spectrometry analyses revealed that two series of pairwise mureidomycin analogs were synthesized in Sr-hA with a two-dalton difference in molecular weight for each pair. By disruption of SSGG-03002, only mureidomycins with lower molecular weight (MRDs, 1-6) could be specifically accumulated in the mutant (∆03002-hA), whereas the other series of products with molecular weight plus 2 Da (rMRDs, 1'-6') became dominant in SSGG-02980 disruption mutant (∆02980-hA). Further comprehensive NMR analyses were performed to elucidate the structures, and three MRDs (3, 4, 5) with unsaturated double bond at C5-C6 of uracil group were characterized from ∆03002-hA. In contrast, the paired rMRDs analogs (3', 4', 5') from ∆SSGG-02980 corresponding to 3, 4 and 5 were shown to contain a single bond at this position. The results verified that SSGG-03002 participates in the reduction of uracil ring, whereas SSGG-02980 antagonizes the effect of SSGG-03002, which has been rarely recognized for a phosphatase. CONCLUSIONS: Overall, this study revealed the key roles of two wide-spread families of enzymes in Streptomyces. Of them, oxidoreductase, SSGG-03002, is involved in dihydro-mureidomycin biosynthesis of S. roseosporus, whereas nuclease/phosphatase, SSGG-02980, has an adverse effect on SSGG-03002. This kind of unusual regulation model between nuclease/phosphatase and oxidoreductase is unprecedented, providing new insights into the biosynthesis of mureidomycins in Streptomyces. The findings would be of significance for structural diversification of more uridyl peptide antibiotics against Gram-negative bacteria.


Assuntos
Antibacterianos , Streptomyces , Peptídeos/metabolismo , Proteínas de Bactérias/metabolismo , Streptomyces/metabolismo , Oxirredutases/metabolismo , Uracila/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Família Multigênica
4.
Small ; 19(49): e2303530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635125

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative condition characterized by inflammation, beta-amyloid (Aß) plaques, and neurodegeneration, which currently lack effective treatments. Chiral nanomaterials have emerged as a promising option for treating neurodegenerative disorders due to their high biocompatibility, strong sustained release ability, and specific enantiomer selectivity. The development of a stimulus-responsive chiral nanomaterial, UiO-66-NH2 @l-MoS2 QDs@PA-Ni (MSP-U), for the treatment of AD is reported. MSP-U is found to stimulate neural stem cell (NSCs) differentiation, promote in situ hydrogen (H2 ) production, and clear Aß plaques. l-MoS2 QDs modified with l-Cysteine (l-Cys) effectively enhance the differentiation of NSCs into neurons through circularly polarized near-infrared radiation. Doped-phytic acid nickel (PA-Ni) improves the activity of l-MoS2 QDs in scavenging reactive oxygen species at the lesion site via photocatalytic H2 production. Loading l-MoS2 QDs with UiO-66 type metal oxide suppresses electron-hole recombination effect, thereby achieving rapid charge separation and improving transport of photogenerated electrons, leading to significantly improved H2 production efficiency. The photothermal effect of MSP-U also clears the generated Aß plaques. In vivo evaluations show that MSP-U improves spatial cognition and memory, suggesting a promising potential candidate for the treatment of AD using chiral nanomaterials.


Assuntos
Doença de Alzheimer , Ácidos Ftálicos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Molibdênio/farmacologia , Peptídeos beta-Amiloides/metabolismo , Cognição
5.
Environ Sci Pollut Res Int ; 30(38): 89123-89139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37452250

RESUMO

Near-surface ozone (O3) pollution has become one of the main factors hampering urban air quality in northern China. However, on a spatiotemporal scale, dynamic transport paths and potential source areas of O3 in northern China are ambiguous. In addition, we suspect that the contribution of transportation activities to urban O3 concentrations developed in northern China may be underestimated. In this study, the HYSPLIT, PSCF, CWT and GTWR model were used to study the transmission paths, potential source areas and driving factors of urban O3 concentration on a spatiotemporal scale. The average annual concentration of surface O3 (the 90th percentile of MDA8) was 172 ± 29 µg/m3 in northern China from 2015 to 2020. In terms of inter-annual variation, the urban O3 concentration increased from 2015 to 2018, and decreased after 2018. On the spatial scale, the areas with high O3 concentration were mainly clustered in industrial cities (Tangshan, Baoding, Shijiazhuang, Xingtai and Handan). During the study period, the area with high O3 concentration in northern China shifted from northwest to southeast. From 2015 to 2020, the influence of long-distance air mass trajectories from Xinjiang and Siberi on airflow transport in Beijing city dominates (78.60%) The average percentage of short-distance transport trajectories from Shandong Peninsula region is about 21.40%. The core potential source areas of O3 pollution shifted from northwest to southeast, but the contribution to O3 pollution in Beijing gradually weakened during the same period. Temperature and relative humidity were the main meteorological driving factors affecting O3 concentration in the study area, while population density, the proportion of secondary industry in GDP, industrial smoke (dust) emissions, and passenger traffic were the main non-meteorological factors. During the period study, the influence of industrial and traffic emissions had a more significant impact on O3 concentration in northern China, which will require that more attention be paid to emission mitigation in the regional industrial and passenger transportation sector, as well as the joint prevention and control of O3 pollution in northern China in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , China
7.
Microbiol Spectr ; : e0385222, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847561

RESUMO

Lasalocid, a representative polyether ionophore, has been successfully applied in veterinary medicine and animal husbandry and also displays promising potential for cancer therapy. Nevertheless, the regulatory system governing lasalocid biosynthesis remains obscure. Here, we identified two conserved (lodR2 and lodR3) and one variable (lodR1, found only in Streptomyces sp. strain FXJ1.172) putative regulatory genes through a comparison of the lasalocid biosynthetic gene cluster (lod) from Streptomyces sp. FXJ1.172 with those (las and lsd) from Streptomyces lasalocidi. Gene disruption experiments demonstrated that both lodR1 and lodR3 positively regulate lasalocid biosynthesis in Streptomyces sp. FXJ1.172, while lodR2 plays a negative regulatory role. To unravel the regulatory mechanism, transcriptional analysis and electrophoretic mobility shift assays (EMSAs) along with footprinting experiments were performed. The results revealed that LodR1 and LodR2 could bind to the intergenic regions of lodR1-lodAB and lodR2-lodED, respectively, thereby repressing the transcription of the lodAB and lodED operons, respectively. The repression of lodAB-lodC by LodR1 likely boosts lasalocid biosynthesis. Furthermore, LodR2 and LodE constitute a repressor-activator system that senses changes in intracellular lasalocid concentrations and coordinates its biosynthesis. LodR3 could directly activate the transcription of key structural genes. Comparative and parallel functional analyses of the homologous genes in S. lasalocidi ATCC 31180T confirmed the conserved roles of lodR2, lodE, and lodR3 in controlling lasalocid biosynthesis. Intriguingly, the variable gene locus lodR1-lodC from Streptomyces sp. FXJ1.172 seems functionally conserved when introduced into S. lasalocidi ATCC 31180T. Overall, our findings demonstrate that lasalocid biosynthesis is tightly controlled by both conserved and variable regulators, providing valuable guidance for further improving lasalocid production. IMPORTANCE Compared to its elaborated biosynthetic pathway, the regulation of lasalocid biosynthesis remains obscure. Here, we characterize the roles of regulatory genes in lasalocid biosynthetic gene clusters of two distinct Streptomyces species and identify a conserved repressor-activator system, LodR2-LodE, which could sense changes in the concentration of lasalocid and coordinate its biosynthesis with self-resistance. Furthermore, in parallel, we verify that the regulatory system identified in a new Streptomyces isolate is valid in the industrial lasalocid producer and thus applicable for the construction of high-yield strains. These findings deepen our understanding of regulatory mechanisms involved in the production of polyether ionophores and provide novel clues for the rational design of industrial strains for scaled-up production.

8.
Sci China Life Sci ; 66(3): 612-625, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36607495

RESUMO

Genome sequencing has revealed that actinomycetes possess the potential to produce many more secondary metabolites than previously thought. The existing challenge is to devise efficient methods to activate these silent biosynthetic gene clusters (BGCs). In Streptomyces ansochromogenes, disruption of wblA, a pleiotropic regulatory gene, activated the expression of cryptic tylosin analogues and abolished nikkomycin production simultaneously. Overexpressing pathway-specific regulatory genes tylR1 and tylR2 can also trigger the biosynthesis of silent tylosin analogues, in which TylR1 exerted its function via enhancing tylR2 expression. Bacterial one-hybrid system experiments unveiled that WblA directly inhibits the transcription of tylR1 and tylR2 to result in the silence of tylosin analogues BGC. Furthermore, WblA can activate the nikkomycin production through up-regulating the transcription of pleiotropic regulatory gene adpA. More interestingly, AdpA can activate sanG (an activator gene in nikkomycin BGC) but repress wblA. Our studies provide a valuable insight into the complex functions of pleiotropic regulators.


Assuntos
Aminoglicosídeos , Tilosina , Tilosina/farmacologia , Aminoglicosídeos/genética , Aminoglicosídeos/farmacologia , Sequência de Bases , Genes Reguladores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
J Environ Manage ; 330: 117105, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610191

RESUMO

Near-ground ozone in the Yangtze River Delta (YRD) region has become one of the main air pollutants that threaten the health of residents. However, to date, the transport behavior and source areas of ozone in the YRD region have not been systematically analyzed. In this study, by combining the ozone observational record with a HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model, we tried to reveal the spatiotemporal regularity of the airflow transport trajectory of ozone. Spatially, high ozone concentrations mainly clustered in industrial cities and resource-based cities. Temporally, the center of the ozone pollution shifted westward of Nanjing from 2015 to 2021. With the passage of time, the influence of meteorological elements on the ozone concentration in the YRD region gradually weakened. Marine atmosphere had the most significant impact on the transmission path of ozone in Shanghai, of which the trajectory frequency in 2021 accounted for 64.21% of the total frequency. The transmission trajectory of ozone in summer was different from that in other seasons, and its transmission trajectory was mainly composed of four medium-distance transmission paths: North China-Bohai Sea, East China Sea-West Pacific Ocean, Philippine Sea, and South China Sea-South China. The contribution source areas mainly shifted to the southeast, and the emission of pollutants from the Shandong Peninsula, the Korean Peninsula-Japan, and the Philippine Sea-Taiwan area increased the impact of ozone pollution in the Shanghai area from 2019 to 2021. This study identified the regional transport path of ozone in the YRD region and provided a scientific reference for the joint prevention and control of ozone pollution in this area.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , China , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Estações do Ano , Material Particulado/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-36115661

RESUMO

Streptomycetes possess numerous gene clusters and the potential to produce large amounts of natural products. Histone deacetylase (HDAC) inhibitors play an important role in the regulation of histone modifications in fungi, but little is known about the roles of HDAC in prokaryotes. Here, we described the global effects of the HDAC inhibitor, sodium butyrate (SB), on marine-derived Streptomyces olivaceus FXJ 8.021, particularly on the activation of secondary metabolites biosynthesis. antiSMASH analysis revealed 33 secondary metabolite biosynthetic gene clusters (BGCs) in strain FXJ 8.021, among which the silent lobophorin BGC was activated by SB. Transcriptomic data showed that the expression of genes involved in lobophorin biosynthesis (ge00097-ge00139) and CoA-ester formation (e.g., ge02824), as well as glycolysis/gluconeogenesis pathway (e.g., ge01661), was mainly up-regulated in the presence of SB. Intracellular CoA-ester analysis confirmed that SB triggered the biosynthesis of CoA-ester, increasing the precursor supply for lobophorin biosynthesis. Further acetylome analysis revealed that the acetylation levels on 218 acetylation sites of 190 proteins were up-regulated and those on 411 sites of 310 proteins were down-regulated. These acetylated proteins were particularly enriched in transcriptional and translational machinery components (e.g., elongation factor GE04399), and their correlations with the proteins involved in lobophorin biosynthesis were established by protein-protein interaction network analysis, suggesting that SB might function via a complex hierarchical regulation to activate expression of lobophorin BGC. These findings provide solid evidence that acetylated proteins triggered by SB could affect the expression of genes in the biosynthesis of primary and secondary metabolites in prokaryotes.

11.
Commun Biol ; 5(1): 901, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056143

RESUMO

The crisis of antibiotic resistance has become an impending global problem. Genome sequencing reveals that streptomycetes have the potential to produce many more bioactive compounds that may combat the emerging pathogens. The existing challenge is to devise sensitive reporter systems for mining valuable antibiotics. Here, we report a visualization reporter system based on Gram-negative bacterial acyl-homoserine lactone quorum-sensing (VRS-bAHL). AHL synthase gene (cviI) of Chromobacterium violaceum as reporter gene is expressed in Gram-positive Streptomyces to synthesize AHL, which is detected with CV026, an AHL deficient mutant of C. violaceum, via its violacein production upon AHL induction. Validation assays prove that VRS-bAHL can be widely used for characterizing gene expression in Streptomyces. With the guidance of VRS-bAHL, a novel oxazolomycin derivative is discovered to the best of our knowledge. The results demonstrate that VRS-bAHL is a powerful tool for advancing genetic regulation studies and discovering valuable active metabolites in microorganisms.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Antibacterianos/farmacologia , Família Multigênica
12.
Artigo em Inglês | MEDLINE | ID: mdl-35742697

RESUMO

This study aims to analyze the spatiotemporal distribution and evolution of digestive tract cancer (DTC) in Lujiang County, China by using the geographic information system technology. Results of this study are expected to provide a scientific basis for effective prevention and control of DTC. The data on DTC cases in Lujiang County, China, were downloaded from the Data Center of the Center for Disease Control and Prevention in Hefei, Anhui Province, China, while the demographic data were sourced from the demographic department in China. Systematic statistical analyses, including the spatial empirical Bayes smoothing, spatial autocorrelation, hotspot statistics, and Kulldorff's retrospective space-time scan, were used to identify the spatial and spatiotemporal clusters of DTC. GM(1,1) and standard deviation ellipses were then applied to predict the future evolution of the spatial pattern of the DTC cases in Lujiang County. The results showed that DTC in Lujiang County had obvious spatiotemporal clustering. The spatial distribution of DTC cases increases gradually from east to west in the county in a stepwise pattern. The peak of DTC cases occurred in 2012-2013, and the high-case spatial clusters were located mainly in the northwest of Lujiang County. At the 99% confidence interval, two spatiotemporal clusters were identified. From 2012 to 2017, the cases of DTC in Lujiang County gradually shifted to the high-incidence area in the northwest, and the spatial distribution range experienced a process of "dispersion-clustering". The cases of DTC in Lujiang County will continue to move to the northwest from 2018 to 2025, and the predicted spatial clustering tends to be more obvious.


Assuntos
Neoplasias , Teorema de Bayes , China/epidemiologia , Análise por Conglomerados , Trato Gastrointestinal , Humanos , Incidência , Estudos Retrospectivos , Análise Espaço-Temporal
13.
Metab Eng ; 72: 289-296, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35439610

RESUMO

Secondary metabolic gene clusters widely exist in the genomes of Streptomyces but mostly remain silent. To awaken this hidden reservoir of natural products, various strategies concerning secondary metabolic pathways are applied. Here, we describe that butenolide signaling molecule deficiency and glucose addition can interdependently activate the expression of silent oviedomycin biosynthetic gene clusters in Streptomyces ansochromogenes and Streptomyces antibioticus. Since oviedomycin is a promising anti-tumor lead compound, in order to improve its yield, we use the cluster-situated genes (ovmF, ovmG, ovmI and ovmH) encoding the enzymes for acyl carrier protein modification and precursor biosynthesis, and the discrete precursor biosynthetic genes (pyk2, gap1 and accA2) involved in glycolysis to assemble two gene modules (pFGIH and pPGA). Their co-overexpression in ΔsabA (a disruption mutant of sabA encoding SAB synthase) has superimposed effect on the yield of oviedomycin, which can be further increased to 59-fold in the presence of galactose as optimal carbon source. This is the most unambiguous evidence that butenolide signaling system can synergize with the optimization of primary metabolism to regulate the expression of secondary metabolic gene clusters, providing efficient strategies for mining natural products of Streptomyces.


Assuntos
Produtos Biológicos , Streptomyces , 4-Butirolactona/análogos & derivados , Aminoglicosídeos , Produtos Biológicos/metabolismo , Éteres Cíclicos , Redes Reguladoras de Genes , Família Multigênica/genética , Streptomyces/genética , Streptomyces/metabolismo
14.
Antibiotics (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572679

RESUMO

With the increase of drug resistance caused by the improper use and abuse of antibiotics, human beings are facing a global health crisis. Sequencing of Streptomyces genomes revealed the presence of an important reservoir of secondary metabolic gene clusters for previously unsuspected products with potentially valuable bioactivity. It has therefore become necessary to activate these cryptic pathways through various strategies. Here, we used RNA-seq data to perform a comparative transcriptome analysis of Streptomyces ansochromogenes (wild-type, WT) and its global regulatory gene disruption mutant ΔwblA, in which some differentially expressed genes are associated with the abolished nikkomycin biosynthesis and activated tylosin analogue compounds (TACs) production, and also with the oviedomycin production that is induced by the genetic manipulation of two differentially expressed genes (san7324 and san7324L) encoding RsbR. These results provide a significant clue for the discovery of new drug candidates and the activation of cryptic biosynthetic gene clusters.

15.
Sci China Life Sci ; 64(10): 1575-1589, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319534

RESUMO

Cell-cell communication is critical for bacterial survival in natural habitats, in which miscellaneous regulatory networks are encompassed. However, elucidating the interaction networks of a microbial community has been hindered by the population complexity. This study reveals that γ-butyrolactone (GBL) molecules from Streptomyces species, the major antibiotic producers, can directly bind to the acyl-homoserine lactone (AHL) receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing (QS) system. Subsequently, the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled. Based on the cross-talk between GBL and AHL signaling systems, combinatorial regulatory circuits (CRC) are designed and proved to be workable in Escherichia coli (E. coli). It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules. These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.


Assuntos
4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , 4-Butirolactona/química , 4-Butirolactona/genética , 4-Butirolactona/farmacologia , Proteínas de Bactérias/genética , Chromobacterium/efeitos dos fármacos , Chromobacterium/genética , Chromobacterium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Indóis/metabolismo , Interações Microbianas , Estrutura Molecular , Percepção de Quorum , Transdução de Sinais , Streptomyces/genética , Streptomyces/metabolismo , Biologia Sintética
16.
Sci China Life Sci ; 64(11): 1949-1963, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33580428

RESUMO

Mureidomycins (MRDs), a group of unique uridyl-peptide antibiotics, exhibit antibacterial activity against the highly refractory pathogen Pseudomonas aeruginosa. Our previous study showed that the cryptic MRD biosynthetic gene cluster (BGC) mrd in Streptomyces roseosporus NRRL 15998 could not be activated by its endogenous regulator 02995 but activated by an exogenous activator SsaA from sansanmycin's BGC ssa of Streptomyces sp. strain SS. Here we report the molecular mechanism for this inexplicable regulation. EMSAs and footprinting experiments revealed that SsaA could directly bind to a 14-nt palindrome sequence of 5'-CTGRCNNNNGTCAG-3' within six promoter regions of mrd. Disruption of three representative target genes (SSGG-02981, SSGG-02987 and SSGG-02994) showed that the target genes directly controlled by SsaA were essential for MRD production. The regulatory function was further investigated by replacing six regions of SSGG-02995 with those of ssaA. Surprisingly, only the replacement of 343-450 nt fragment encoding the 115-150 amino acids (AA) of SsaA could activate MRD biosynthesis. Further bioinformatics analysis showed that the 115-150 AA situated between two conserved domains of SsaA. Our findings significantly demonstrate that constitutive expression of a homologous exogenous regulatory gene is an effective strategy to awaken cryptic biosynthetic pathways in Streptomyces.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Genes Reguladores , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Nucleosídeos/biossíntese , Streptomyces/genética , Fatores de Transcrição
17.
Microb Biotechnol ; 14(6): 2356-2368, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33270372

RESUMO

Salinomycin, an FDA-approved polyketide drug, was recently identified as a promising anti-tumour and anti-viral lead compound. It is produced by Streptomyces albus, and the biosynthetic gene cluster (sal) spans over 100 kb. The genetic manipulation of large polyketide gene clusters is challenging, and approaches delivering reliable efficiency and accuracy are desired. Herein, a delicate strategy to enhance salinomycin production was devised and evaluated. We reconstructed a minimized sal gene cluster (mini-cluster) on pSET152 including key genes responsible for tailoring modification, antibiotic resistance, positive regulation and precursor supply. These genes were overexpressed under the control of constitutive promoter PkasO* or Pneo . The pks operon was not included in the mini-cluster, but it was upregulated by SalJ activation. After the plasmid pSET152::mini-cluster was introduced into the wild-type strain and a chassis host strain obtained by ribosome engineering, salinomycin production was increased to 2.3-fold and 5.1-fold compared with that of the wild-type strain respectively. Intriguingly, mini-cluster introduction resulted in much higher production than overexpression of the whole sal gene cluster. The findings demonstrated that reconstitution of sal mini-cluster combined with ribosome engineering is an efficient novel approach and may be extended to other large polyketide biosynthesis.


Assuntos
Streptomyces , Família Multigênica , Piranos , Ribossomos/genética , Streptomyces/genética
18.
ACS Synth Biol ; 9(9): 2493-2501, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32864952

RESUMO

Neomycin, a multicomponent aminoglycoside antibiotic, is mainly utilized in livestock husbandry and feed additives in animals. The antimicrobial potency of the main product neomycin B is higher than that of its stereoisomer neomycin C. However, the content of neomycin C as an impurity in the high-producing strain is relatively high, and its isolation or removal from neomycin B is quite difficult, which influences the widespread application of neomycin. In this work, the essential genes responsible for neomycin biosynthesis were evaluated and overexpressed to reduce the content of neomycin C. Among them, neoG and neoH are two novel regulatory genes for neomycin biosynthesis, aphA is a resistance gene, neoN encoding a radical SAM-dependent epimerase is responsible for the conversion of neomycin C to B using SAM as the cofactor, and metK is a SAM synthetase coding gene. We demonstrated that the reconstitution and overexpression of a mini-gene-cluster (PkasO*-neoN-metK-PkasO*-neoGH-aphA) could effectively reduce the accumulation of neomycin C from 19.1 to 12.7% and simultaneously increase neomycin B by ∼13.1% in the engineered strain Sf/pKCZ04 compared with the wild-type strain (Sf). Real-time quantitative polymerase chain reaction analysis revealed the remarkable up-regulation of the neoE, neoH, neoN, and metK genes situated in the mini-gene-cluster. The findings will pave a new path for component optimization and the large-scale industrial production of significant commercial antibiotics.


Assuntos
Antibacterianos/biossíntese , Neomicina/biossíntese , Streptomyces/metabolismo , Antibacterianos/química , Vias Biossintéticas/genética , Metionina Adenosiltransferase/genética , Família Multigênica , Neomicina/química , Plasmídeos/genética , Plasmídeos/metabolismo , Streptomyces/química , Streptomyces/genética
19.
Front Bioeng Biotechnol ; 8: 1013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974326

RESUMO

Chlorothricin (CHL), produced by Streptomyces antibioticus DSM 40725 (wild-type strain, WT), belongs to a growing family of spirotetronate antibiotics that have biological activities inhibiting pyruvate carboxylase and malate dehydrogenase. ChlF2, a cluster-situated SARP regulator, can activate the transcription of chlJ, chlC3, chlC6, chlE1, chlM, and chlL to control CHL biosynthesis. Co-expression of chlF2 and chlK encoding type II thioesterase in WT strain under the control of P kan led to high production of chlorothricin by 840% in comparison with that of WT. Since the inhibitory activity of CHL against several Gram-positive bacteria is higher than des-CHL, combinatorial strategies were applied to promote the conversion of des-CHL to CHL. Over-expression of chlB4, encoding a halogenase, combining with the supplementation of sodium chloride led to further 41% increase of CHL production compared to that of F2OE, a chlF2 over-expression strain. These findings provide new insights into the fine-tuned regulation of spirotetronate family of antibiotics and the construction of high-yield engineered strains.

20.
Plant J ; 101(1): 18-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454118

RESUMO

The plant flavonoid dogma proposes that labile plant flavonoid carbocations (PFCs) play vital roles in the biosynthesis of proanthocyanidins (PAs). However, whether PFCs exist in plants and how PFCs function remain unclear. Here, we report the use of an integrative strategy including enzymatic assays, mutant analysis, metabolic engineering, isotope labeling and metabolic profiling to capture PFCs and demonstrate their functions. In anthocyanidin reductase (ANR) assays, an (-)-epicatechin conjugate was captured in protic polar nucleophilic methanol alone or methanol-HCl extracts. Tandem mass spectrum (MS/MS) analysis characterized this compound as an (-)-epicatechin-4-O-methyl (EOM) ether, which resulted from (-)-epicatechin carbocation and the methyl group of methanol. Acid-based catalysis of procyanidin B2 and B3 produced four compounds, which were annotated as two EOM and two (+)-catechin-4-O-methyl (COM) ethers. Metabolic profiling of seven PA pathway mutants showed an absence or reduction of two EOM ether isomers in seeds. Camellia sinensis ANRa (CsANRa), leucoanthocyanidin reductase c (CsLARc), and CsMYB5b (a transcription factor) were independently overexpressed for successful PA engineering in tobacco. The EOM ether was remarkably increased in CsANRa and CsMYB5b transgenic flowers. Further metabolic profiling for eight green tea tissues revealed two EOM and two COM ethers associated with PA biosynthesis. Moreover, an incubation of (-)-epicatechin or (+)-catechin with epicatechin carbocation in CsANRa transgenic flower extracts formed dimeric procyanidin B1 or B2, demonstrating the role of flavan-3-ol carbocation in the formation of PAs. Taken together, these findings indicated that flavan-3-ol carbocations exist in extracts and are involved in the biosynthesis of PAs of plants.


Assuntos
Flavonoides/metabolismo , Proantocianidinas/biossíntese , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...