Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212372

RESUMO

At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.

2.
BMC Complement Med Ther ; 23(1): 307, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667314

RESUMO

BACKGROUND: Allergy is an inflammatory disorder affecting around 20% of the global population. The adverse effects of current conventional treatments give rise to the increased popularity of using natural food products as complementary and alternative medicine against allergic diseases. Stingless bee honey, commonly known as Kelulut honey (KH) in Malaysia, has been used locally as a traditional remedy to relieve cough and asthma. This study evaluated the anti-allergic potential of KH collected from four different botanical sources on phorbol ester 12-myristate-3-acetate and calcium ionophore-activated human mast cells. METHODS: The present study examined the inhibitory effects of all collected honey on the release of selected inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, IL-8, histamine, and ß-hexosaminidase in an activated HMC. Besides that, all honey's total phenolic content (TPC) was also examined, followed by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the phytochemicals in the honey. Further examination of the identified phytochemicals on their potential interaction with selected signaling molecules in an activated mast cell was conducted using computational methods. RESULTS: The results indicated that there were significant inhibitory effects on all selected inflammatory mediators' release by KH sourced from bamboo (BH) and rubber tree (RH) at 0.5% and 1%, but not KH sourced from mango (AH) and noni (EH). BH and RH were found to have higher TPC values and were rich in their phytochemical profiles based on the LC-MS/MS results. Computational studies were employed to determine the possible molecular target of KH through molecular docking using HADDOCK and PRODIGY web servers. CONCLUSIONS: In short, the results indicated that KH possesses anti-allergic effects towards an activated HMC, possibly by targeting downstream MAPKs. However, their anti-allergic effects may vary according to their botanical sources. Nevertheless, the present study has provided insight into the potential application of stingless bee honey as a complementary and alternative medicine to treat various allergic diseases.


Assuntos
Antialérgicos , Mel , Hipersensibilidade , Humanos , Abelhas , Animais , Antialérgicos/farmacologia , Mastócitos , Degranulação Celular , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
3.
3 Biotech ; 13(2): 71, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36742448

RESUMO

Cyanobacteria bioactive compounds are chemical treasure troves for product discovery and development. The wound healing effects and antioxidant capacities of water extracts from Nostoc NIES-2111_MUM004 were evaluated via in vitro wound scratch assay and three antioxidant assays respectively. Results showed that the water extracts were protein-rich and exhibited good antioxidant properties in ABTS radical scavenging (11.27 ± 0.205 mg TAE g-1 extract), Ferric reducing antioxidant power (1652.71 ± 110.71 mg TAE g-1 extract) and ß-carotene bleaching assay (354.90 ± 31.80 mg TAE g-1 extract). Also, extracts were non-cytotoxic in concentrations up to 250 µg/mL as reflected in cytotoxicity assay. Importantly, water extracts showed considerable proliferation and migration activity at 125 µg/mL with wound closure rate as high as 42.67%. Statistical correlation revealed no significant relationship (p > 0.05) between protein fraction and the wound healing properties, confirming that phycobiliproteins were not solely responsible for wound healing activities. Subsequent Q-TOF-LCMS analysis identified six protein families involved in enhancing the proliferation and migration of epithelial cells. These findings are antecedent in the uncovering of continuous supplies of bioactive compounds from new and sustainable sources. Ultimately, enriching the microalgae menu for applications in pharmaceutical, nutraceutical and cosmeceuticals.

4.
J Ethnopharmacol ; 303: 116003, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464074

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Allergy is mediated by the crosslinking of immunoglobulins (Ig) -E or -G to their respective receptors, which degranulates mast cells, macrophages, basophils, or neutrophils, releasing allergy-causing mediators. The removal of these mediators such as histamine, platelet-activating factor (PAF) and interleukins (ILs) released by effector cells will alleviate allergy. Clinacanthus nutans (C. nutans), an herbal plant in Southeast Asia, is used traditionally to treat skin rash, an allergic symptom. Previously, we have reported that C. nutans aqueous leaves extract (CNAE) was able to suppress the release of ß-hexosaminidase and histamine but not interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in the IgE-induced mast cell degranulation model at 5 mg/mL and above. We also found that CNAE could protect rats against ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) through the downregulation and upregulation of certain metabolites using proton nuclear magnetic resonance (1H-NMR) metabolomics approach. AIM OF THE STUDY: As allergy could be mediated by both IgE and IgG, we further evaluated the anti-allergy potential of CNAE in both in vitro model of IgG-induced macrophage activation and in vivo anaphylaxis models to further dissect the mechanism of action underlying the anti-allergic properties of CNAE. MATERIAL & METHODS: The anti-allergy potential of CNAE was evaluated in in vivo anaphylaxis models of ovalbumin-challenged active systemic anaphylaxis (OVA-ASA) and IgE-challenged passive systemic anaphylaxis (PSA) using Sprague Dawley rats as well as IgG-challenged passive systemic anaphylaxis (IgG-PSA) using C57BL/6 mice. Meanwhile, in vitro model of IgG-induced macrophage activation model was performed using IC-21 macrophages. The release of soluble mediators from both IgE and IgG-mediated pathways were measured using enzyme-linked immunosorbent assay (ELISA). The signaling molecules targeted by CNAE were identified by performing Western blot. RESULTS: IgG, platelet-activating factor (PAF) and IL-6 was suppressed by CNAE in OVA-ASA, but not IgE. In addition, CNAE significantly suppressed PAF and IL-6 in IgG-PSA but did not suppress histamine, IL-4 and leukotrienes C4 (LTC4) in IgE-PSA. CNAE also inhibited IL-6 and TNF-α by inhibiting the phosphorylation of ERK1/2 in the IgG-induced macrophage activation model. CONCLUSION: Overall, our findings supported that CNAE exerts its anti-allergic properties by suppressing the IgG pathway and its mediators by inhibiting ERK1/2 phosphorylation, thus providing scientific evidence supporting its traditional use in managing allergy.


Assuntos
Anafilaxia , Antialérgicos , Camundongos , Ratos , Animais , Anafilaxia/etiologia , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Interleucina-4/metabolismo , Ratos Sprague-Dawley , Histamina/metabolismo , Ovalbumina , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Imunoglobulina E/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Fator de Ativação de Plaquetas/uso terapêutico , Imunoglobulina G , Mastócitos
5.
Front Pharmacol ; 13: 785782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685636

RESUMO

Over the past few decades, complementary and alternative medicine (CAM) using herbs, or their active constituents have garnered substantial attention in the management of a chronic and relapsing inflammatory skin disorder called atopic dermatitis (AD), particularly in attenuating disease recurrence and maintaining long-term remission. In Eastern Asian countries including China, Korea and Taiwan, herbal medicine available in both topical and oral preparation plays a significant role in treating skin diseases like AD as they possibly confer high anti-inflammatory properties and immunomodulatory functions. Conventional murine models of AD have been employed in drug discovery to provide scientific evidence for conclusive and specific pharmacological effects elicited by the use of traditional herbs and their active constituents. Coupled with the goal to develop safe and effective novel therapeutic agents for AD, this systematic review consists of a summary of 103 articles on both orally and topically administered herbs and their active constituents in the murine model, whereby articles were screened and selected via a specialized framework known as PICO (Population, Intervention, Comparator and Outcome). The objectives of this review paper were to identify the efficacy of oral and topical administered herbs along with their active constituents in alleviating AD and the underlying mechanism of actions, as well as the animal models and choice of inducer agents used in these studies. The main outcome on the efficacy of the majority of the herbs and their active constituents illustrated suppression of Th2 response as well as improvements in the severity of AD lesions, suppression of Immunoglobulin E (IgE) concentration and mast cell infiltration. The majority of these studies used BALB/c mice followed by NC/Nga mice (commonly used gender-male; commonly used age group - 6-8 weeks). The most used agent in inducing AD was 2, 4-Dinitrochlorobenzene (DNCB), and the average induction period for both oral and topical administered herbs and their active constituents in AD experiments lasted between 3 and 4 weeks. In light of these findings, this review paper could potentially assist researchers in exploring the potential candidate herbs and their active constituents using murine model for the amelioration of AD.

6.
Front Nutr ; 9: 786972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369089

RESUMO

Communicable diseases are illnesses caused by pathogenic biological agents, including viruses, bacteria, fungi, parasites, and protozoa. Such diseases spread among people through contact with contaminated surfaces, bodily fluids, or blood products, or through the air, insect bites, or consuming contaminated food and beverages. Although some communicable diseases can be treated or prevented by taking medication and vaccines, there has been an increase in awareness of adopting a healthy diet to aid in the prevention and reversal of these diseases. One popular diet is a plant-based diet. Plant-based diets generally consist of vegetables, grains, nuts, seeds, legumes, and fruits, without any animal-source foods or artificial ingredients. Over the years, this diet has continuously increased in popularity. Reasons for following a plant-based diet are varied but include health benefits, such as improving immunity, and reducing the risk of heart disease, diabetes, and some cancers. Scientific evidence even shows that just an increased vegetable intake can decrease the occurrence of chronic diseases caused by viruses, such as hepatitis viruses, and reduce the risk of severe coronavirus disease 2019. Therefore, this mini review discusses the effectiveness of adopting a plant-based diet in ameliorating diseases caused by selected viruses and its limitations.

7.
Immunopharmacol Immunotoxicol ; 43(6): 813-824, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34694946

RESUMO

CONTEXT: The airway epithelial barrier can be disrupted by house dust mite (HDM) allergens leading to allergic airway inflammation. Zerumbone, a natural monocyclic sesquiterpene, was previously found to possess anti-asthmatic effect by modulating Th1/Th2 cytokines. However, the protective role of zerumbone on epithelial barrier function remains to be fully explored. OBJECTIVE: To investigate the effect of zerumbone on HDM extract-induced airway epithelial barrier dysfunction. MATERIALS AND METHODS: Human bronchial epithelial cells 16HBE14o- were incubated with 100 µg/mL HDM extract and treated with non-cytotoxic concentrations of zerumbone (6.25 µM, 12.5 µM, and 25 µM) for 24 h. The epithelial junctional integrity and permeability were evaluated through transepithelial electrical resistance (TEER) and fluorescein isothiocynate (FITC)-Dextran permeability assays, respectively. The localization of junctional proteins, occludin and zona occludens (ZO)-1, was studied using immunofluorescence (IF) while the protein expression was measured by western blot. RESULTS: Zerumbone inhibited changes in junctional integrity (6.25 µM, p ≤ .05; 12.5 µM, p ≤ .001; 25 µM, p ≤ .001) and permeability (6.25 µM, p ≤ .05; 12.5 µM, p ≤ .01; 25 µM, p ≤ .001) triggered by HDM extract in a concentration-dependent manner. This protective effect could be explained by the preservation of occludin (12.5 µM, p ≤ .01 and 25 µM, p ≤ .001) and ZO-1 (12.5 µM, p ≤ .05 and 25 µM, p ≤ .001) localization, rather than the prevention of their cleavage. DISCUSSION AND CONCLUSION: Zerumbone attenuates HDM extract-induced epithelial barrier dysfunction which supports its potential application for the treatment of inflammation-driven airway diseases such as asthma.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Pyroglyphidae/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sesquiterpenos/farmacologia , Animais , Linhagem Celular , Linhagem Celular Transformada , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Lactente , Masculino , Pyroglyphidae/imunologia , Mucosa Respiratória/imunologia
8.
Front Pharmacol ; 12: 736339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531753

RESUMO

2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a bioactive phloroglucinol compound found in Melicope pteleifolia (Champ. ex Benth.) T.G.Hartley, a medicinal plant vernacularly known as "tenggek burung". A variety of phytochemicals have been isolated from different parts of the plant including leaves, stems, and roots by using several extraction methods. Specifically, tHGA, a drug-like compound containing phloroglucinol structural core with acyl and geranyl group, has been identified in the methanolic extract of the young leaves. Due to its high nutritional and medicinal values, tHGA has been extensively studied by using various experimental models. These studies have successfully discovered various interesting pharmacological activities of tHGA such as anti-inflammatory, endothelial and epithelial barrier protective, anti-asthmatic, anti-allergic, and anti-cancer. More in-depth investigations later found that these activities were attributable to the modulatory actions exerted by tHGA on specific molecular targets. Despite these findings, the association between the mechanisms and signaling pathways underlying each pharmacological activity remains largely unknown. Also, little is known about the medicinal potentials of tHGA as a drug lead in the current pharmaceutical industry. Therefore, this mini review aims to summarize and relate the pharmacological activities of tHGA in terms of their respective mechanisms of action and signaling pathways in order to present a perspective into the overall modulatory actions exerted by tHGA. Besides that, this mini review will also pinpoint the unexplored potentials of this compound and provide some valuable insights into the potential applications of tHGA which may serve as a guide for the development of modern medication in the future.

9.
Front Pharmacol ; 12: 785371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126124

RESUMO

Allergic diseases are a global health burden with increasing prevalence. Side effects of available medications (antihistamines and steroids), lack of patients' perceived effectiveness and high cost of biologic therapies (omalizumab) are challenges to the clinical management of allergic diseases. As allergy symptoms persist for a long time, complementary and alternative medicine (CAM) such as propolis may be considered a potential prophylactic or therapeutic option to avoid long-term medication use. Propolis is a natural resinous substance produced by bees. Although propolis is well known to possess antioxidant, antimicrobial, and anticancer properties, its anti-allergic potential is not fully explored. Several preclinical studies demonstrated the therapeutic effects of propolis extracts against allergic inflammation, asthma, allergic rhinitis, atopic dermatitis, and food allergy, which may be partly attributed to their inhibitory effects on the activation of mast cells and basophils. Clinically, the consumption of propolis as a supplement or an adjunct therapy is safe and attenuates various pathological conditions in asthma. Such an approach may be adopted for atopic dermatitis and allergic rhinitis. Although flavonoids (chrysin, kaempferol, galangin, and pinocembrin) and cinnamic acid derivatives (artepillin C and caffeic acid phenethyl ester) can contribute to the anti-allergic activities, they may not be present in all propolis samples due to variations in the chemical composition. Future studies should relate the anti-allergic activity of propolis with its chemical contents. This mini-review summarizes and discusses existing preclinical and clinical studies reporting the anti-allergic activities of propolis to provide insights into its potential applications in allergic diseases.

10.
Nat Commun ; 11(1): 1797, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286273

RESUMO

Mutations that inactivate negative translation regulators cause autism spectrum disorders (ASD), which predominantly affect males and exhibit social interaction and communication deficits and repetitive behaviors. However, the cells that cause ASD through elevated protein synthesis resulting from these mutations remain unknown. Here we employ conditional overexpression of translation initiation factor eIF4E to increase protein synthesis in specific brain cells. We show that exaggerated translation in microglia, but not neurons or astrocytes, leads to autism-like behaviors in male mice. Although microglial eIF4E overexpression elevates translation in both sexes, it only increases microglial density and size in males, accompanied by microglial shift from homeostatic to a functional state with enhanced phagocytic capacity but reduced motility and synapse engulfment. Consequently, cortical neurons in the mice have higher synapse density, neuroligins, and excitation-to-inhibition ratio compared to control mice. We propose that functional perturbation of male microglia is an important cause for sex-biased ASD.


Assuntos
Transtorno Autístico/metabolismo , Comportamento Animal , Microglia/metabolismo , Biossíntese de Proteínas , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Feminino , Perfilação da Expressão Gênica , Genótipo , Homeostase , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fagocitose , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/ultraestrutura , Comportamento Social , Sinapses/metabolismo
11.
Nat Commun ; 11(1): 1729, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265438

RESUMO

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Assuntos
Hiperfagia/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Apetite/genética , Comportamento Alimentar/fisiologia , Feminino , Hiperfagia/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiopatologia , Proteínas Tirosina Quinases/genética , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo
12.
Front Pharmacol ; 11: 599080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574752

RESUMO

Honey has been conventionally consumed as food. However, its therapeutic properties have also gained much attention due to its application as a traditional medicine. Therapeutic properties of honey such as anti-microbial, anti-inflammatory, anti-cancer and wound healing have been widely reported. A number of interesting studies have reported the potential use of honey in the management of allergic diseases. Allergic diseases including anaphylaxis, asthma and atopic dermatitis (AD) are threatening around 20% of the world population. Although allergic reactions are somehow controllable with different drugs such as antihistamines, corticosteroids and mast cell stabilizers, modern dietary changes linked with allergic diseases have prompted studies to assess the preventive and therapeutic merits of dietary nutrients including honey. Many scientific evidences have shown that honey is able to relieve the pathological status and regulate the recruitment of inflammatory cells in cellular and animal models of allergic diseases. Clinically, a few studies demonstrated alleviation of allergic symptoms in patients after application or consumption of honey. Therefore, the objective of this mini review is to discuss the effectiveness of honey as a treatment or preventive approach for various allergic diseases. This mini review will provide insights into the potential use of honey in the management of allergic diseases in clinical settings.

13.
Nat Commun ; 10(1): 3622, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399584

RESUMO

Caspase-2 is the most evolutionarily conserved member in the caspase family of proteases and is constitutively expressed in most cell types including neurons; however, its physiological function remains largely unknown. Here we report that caspase-2 plays a critical role in synaptic plasticity and cognitive flexibility. We found that caspase-2 deficiency led to deficits in dendritic spine pruning, internalization of AMPA receptors and long-term depression. Our results indicate that caspase-2 degrades Rictor, a key mTOR complex 2 (mTORC2) component, to inhibit Akt activation, which leads to enhancement of the GSK3ß activity and thereby long-term depression. Furthermore, we found that mice lacking caspase-2 displayed elevated levels of anxiety, impairment in reversal water maze learning, and little memory loss over time. These results not only uncover a caspase-2-mTORC2-Akt-GSK3ß signaling pathway, but also suggest that caspase-2 is important for memory erasing and normal behaviors by regulating synaptic number and transmission.


Assuntos
Caspase 2/metabolismo , Cognição/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais/fisiologia , Animais , Ansiedade , Comportamento Animal , Proteínas de Transporte/metabolismo , Caspase 2/genética , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/genética , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de Glutamato/metabolismo
14.
Biosci Rep ; 39(6)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31110077

RESUMO

Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both ß-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.


Assuntos
Acetofenonas/farmacologia , Degranulação Celular/efeitos dos fármacos , Dengue/imunologia , Mastócitos/efeitos dos fármacos , Floroglucinol/análogos & derivados , Acetofenonas/química , Animais , Degranulação Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Cetotifeno/química , Cetotifeno/farmacologia , Mastócitos/imunologia , Mastócitos/fisiologia , Estrutura Molecular , Floroglucinol/química , Floroglucinol/farmacologia , Ratos , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Células Vero , beta-N-Acetil-Hexosaminidases/imunologia , beta-N-Acetil-Hexosaminidases/metabolismo
15.
Cell Metab ; 29(4): 917-931.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661931

RESUMO

Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.


Assuntos
Ansiolíticos/farmacologia , Bromazepam/farmacologia , Carbolinas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Ansiolíticos/administração & dosagem , Peso Corporal/efeitos dos fármacos , Bromazepam/administração & dosagem , Carbolinas/administração & dosagem , Dieta , Camundongos , Camundongos Endogâmicos , Obesidade/induzido quimicamente , Obesidade/metabolismo
16.
Front Pharmacol ; 9: 652, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973880

RESUMO

Zingiber zerumbet (L) Smith is part of the Zingiberaceae family, one of the largest families of the plant kingdom. Z. zerumbet is a perennial, aromatic and tuberose plant that grows in humid locations where its center of distribution is located in the South-East Asia region. This plant has been traditionally used in foods and beverages and for ornamental purposes. Although many studies have reported on the biomedical applications of Z. zerumbet, the anti-allergic effects of Z. zerumbet and its major bioactive compounds have not yet been summarized in detail. Many major metabolites that have been reported to contain anti-allergic properties are terpene compounds which can be found in the essential oil extracted from the rhizomes of Z. zerumbet, such as zerumbone, limonene, and humulene. The rhizome is among the part of Z. zerumbet that has been widely used for many studies due to its exceptional biomedical applications. Most of these studies have shown that the essential oil, which can be obtained through hydro-distillation of the rhizomes from Z. zerumbet, is enriched with various active metabolites. Therefore, this mini-review provides an overview of the main aspects related to the anti-allergic and immunomodulatory properties of the major bioactive compounds found in the essential oils extracted from the rhizomes of Z. zerumbet, with the aim of demonstrating the importance of essential oil extracted from the rhizomes of Z. zerumbet and its bioactive compounds in the treatment of allergy and allergy-related diseases, in addition to other widely reported and extensively studied biomedical applications.

17.
Biochem Pharmacol ; 144: 132-148, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813645

RESUMO

Mast cells play a central role in the pathogenesis of allergic reaction. Activation of mast cells by antigens is strictly dependent on the influx of extracellular calcium that involves a complex interaction between signalling molecules located within the cells. We have previously reported that tHGA, an active compound originally isolated from a local shrub known as Melicope ptelefolia, prevented IgE-mediated mast cell activation and passive systemic anaphylaxis by suppressing the release of interleukin-4 (IL-4) and tumour necrosis factor (TNF)-α from activated rat basophilic leukaemia (RBL)-2H3 cells. However, the mechanism of action (MOA) as well as the molecular target underlying the mast cell stabilising effect of tHGA has not been previously investigated. In this study, DNP-IgE-sensitised RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA. To dissect the MOA of tHGA in IgE-mediated mast cell activation, the effect of tHGA on the transcription of IL-4 and TNF-α mRNA was determined using Real Time-Polymerase Chain Reaction (qPCR) followed by Calcium Influx Assay to confirm the involvement of calcium in the activation of mast cells. The protein lysates were analysed by using Western Blot to determine the effect of tHGA on various important signalling molecules in the LAT-PLCγ-MAPK and PI3K-NFκB pathways. In order to identify the molecular target of tHGA in IgE-mediated mast cell activation, the LAT and LAT2 genes in RBL-2H3 cells were knocked-down by using RNA interference to establish a LAT/LAT2 competition model. The results showed that tHGA inhibited the transcription of IL-4 and TNF-α as a result of the suppression of calcium influx in activated RBL-2H3 cells. The results from Western Blot revealed that tHGA primarily inhibited the LAT-PLCγ-MAPK pathway with partial inhibition on the PI3K-p65 pathway without affecting Syk. The results from RNAi further demonstrated that tHGA failed to inhibit the release of mediators associated with mast cell degranulation under the LAT/LAT2 competition model in the absence of LAT. Collectively, this study concluded that the molecular target of tHGA could be LAT and may provide a basis for the development of a mast cell stabiliser which targets LAT.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunoglobulina E/fisiologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Extratos Vegetais/farmacologia , Rutaceae , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Extratos Vegetais/isolamento & purificação , Ratos
18.
Toxicol Appl Pharmacol ; 319: 47-58, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167223

RESUMO

tHGA, a geranyl acetophenone compound originally isolated from a local shrub called Melicope ptelefolia, has been previously reported to prevent ovalbumin-induced allergic airway inflammation in a murine model of allergic asthma by targeting cysteinyl leukotriene synthesis. Mast cells are immune effector cells involved in the pathogenesis of allergic diseases including asthma by releasing cysteinyl leukotrienes. The anti-asthmatic properties of tHGA could be attributed to its inhibitory effect on mast cell degranulation. As mast cell degranulation is an important event in allergic responses, this study aimed to investigate the anti-allergic effects of tHGA in cellular and animal models of IgE-mediated mast cell degranulation. For in vitro model of IgE-mediated mast cell degranulation, DNP-IgE-sensitized RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA to induce degranulation. For IgE-mediated passive systemic anaphylaxis, Sprague Dawley rats were sensitized by intraperitoneal injection of DNP-IgE before challenged with DNP-BSA. Both in vitro and in vivo models showed that tHGA significantly inhibited the release of preformed mediators (ß-hexosaminidase and histamine) as well as de novo mediators (interleukin-4, tumour necrosis factor-α, prostaglandin D2 and leukotriene C4). Pre-treatment of tHGA also prevented IgE-challenged RBL-2H3 cells and peritoneal mast cells from undergoing morphological changes associated with mast cell degranulation. These findings indicate that tHGA possesses potent anti-allergic activity via attenuation of IgE-mediated mast cell degranulation and inhibition of IgE-mediated passive systemic anaphylaxis. Thus, tHGA may have the potential to be developed as a mast cell stabilizer for the treatment of allergic diseases in the future.


Assuntos
Acetofenonas/farmacologia , Antialérgicos/farmacologia , Imunoglobulina E/toxicidade , Mastócitos/efeitos dos fármacos , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Floroglucinol/análogos & derivados , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva/fisiologia , Floroglucinol/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Molecules ; 21(5)2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27120593

RESUMO

Alzheimer's disease is considered one of the major neurodegenerative diseases and is characterized by the production of ß-amyloid (Aß) proteins and progressive loss of neurons. Biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, was used in the present study as a potential alternative to estrogen replacement therapy via the investigation of its neuroprotective effects against Aß25-35-induced toxicity, as well as of its potential mechanisms of action in PC12 cells. Exposure of these cells to the Aß25-35 protein significantly increased cell viability loss and apoptosis. However, the effects induced by Aß25-35 were markedly reversed in the present of biochanin A. Pretreatment with biochanin A attenuated the cytotoxic effect of the Aß25-35 protein by decreasing viability loss, LDH release, and caspase activity in cells. Moreover, we found that expression of cytochrome c and Puma were reduced, alongside with the restoration of Bcl-2/Bax and Bcl-xL/Bax ratio in the presence of biochanin A, which led to a decrease in the apoptotic rate. These data demonstrate that mitochondria are involved in the protective effect of biochanin A against Aß25-35 and that this drug attenuated Aß25-35-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Thus, biochanin A might raise a possibility as a potential therapeutic agent for Alzheimer's disease and other related neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Genisteína/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Animais , Apoptose , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos
20.
Sci Rep ; 5: 15000, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449319

RESUMO

The emotion of despair that occurs with uncontrollable stressful event is probably retained by memory, termed despair-associated memory, although little is known about the underlying mechanisms. Here, we report that forced swimming (FS) with no hope to escape, but not hopefully escapable swimming (ES), enhances hippocampal α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent GluA1 Ser831 phosphorylation (S831-P), induces a slow-onset CA1 long-term potentiation (LTP) in freely moving rats and leads to increased test immobility 24-h later. Before FS application of the antagonists to block S831-P or N-methyl-D-aspartic acid receptor (NMDAR) or glucocorticoid receptor (GR) disrupts LTP and reduces test immobility, to levels similar to those of the ES group. Because these mechanisms are specifically linked with the hopeless of escape from FS, we suggest that despair-associated memory occurs with an endogenous CA1 LTP that is intriguingly mediated by a unique combination of rapid S831-P with NMDAR and GR activation to shape subsequent behavioral despair.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Região CA1 Hipocampal/metabolismo , Corticosterona/farmacologia , Depressão/fisiopatologia , Depressão/psicologia , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Immunoblotting , Ketamina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Fosforilação/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Espironolactona/farmacologia , Estresse Psicológico/psicologia , Natação/fisiologia , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...