Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 479: 135554, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39232354

RESUMO

Achieving circularity in the plastic economy predominantly depends on sourcing higher quality recyclates. Packaging plastic poses a significant challenge as it is often not prioritised for collection or recycling initiatives. The presence of additives, such as printing ink, impedes the quality of recyclates. Considering the volume of packaging plastics and the importance of branding (aesthetics and consumer information), ink removal is a critical pre-treatment step. However, the literature is limited, with only 14 studies exploring de-inking processes. Drawing parallels with the detergent laundering process, surfactants have been widely investigated in plastic de-inking, with cationic surfactants proving the most effective with a de-inking efficiency of up to 100%. However, concerns exist regarding the toxic and hazardous nature of the surfactants and chemicals. The average hazard quotient (AHQ) was developed, which compares de-inking chemicals as one of the key findings. AHQ provides a quantitative proxy for the hazards and toxicities, which are qualitatively presented as part of the globally harmonised system (GHS) classification of chemicals. To drive emerging packaging plastic de-inking, including the development of green surfactants (e.g. gamma-valerolactone), this work enables an informed chemical selection minimising potential hazards (rather than creating more adverse effects in plastic recycling processes) and toxicities from plastic waste, fulfilling the objectives of cleaner plastic waste recycling.

2.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787564

RESUMO

As a class of ionic liquids with higher biocompatibility, cholinium aminoates ([Cho][AA]) hold potential as solvation media for enzymatic bioprocessing. Herein, solvation effect of [Cho][AA] on structural stability and enzymatic activity of Candida antarctica lipase B (CALB) was evaluated using experimental and computational approaches. Influence of [Cho][AA] on CALB stability was investigated using amino acid anions ([AA]-) with varying hydrophobicity levels. Choline phenylalaninate ([Cho][Phe]) resulted in 109.1% and 110.4% of relative CALB activity to buffer medium at 25 °C and 50 °C, respectively. Simulation results revealed the improvement of CALB's enzymatic activities by [AA]- with a strong hydrophobic character. Shielding of CALB from water molecules by [AA]- was observed. The level of CALB activity was governed by accumulation level of [AA]- at CALB's first hydration layer. The stronger interaction between His224 and Asp187 was postulated to be driven by [Cho][AA], resulting in the activity enhancement of CALB. The slight improvement of CALB activity in 0.05 M [Cho][Phe] at 50 °C could be due to the larger size of entrance to the catalytic site and the stronger interaction between the catalytic residues. The promising effect of [Cho][Phe] on CALB activation may stimulate research efforts in designing a 'fully green' bioreaction for various industrial applications.Communicated by Ramaswamy H. Sarma.

3.
Environ Sci Pollut Res Int ; 27(23): 29352-29360, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32440875

RESUMO

Cement is a vital material used in the construction of concrete buildings. World annual cement demand is increasing rapidly along with the improvement in infrastructure development. However, cement manufacturing industries are facing challenges in reducing the environmental impacts of cement production. To resolve this issue, a suitable methodology is crucial to ensure the selected processes are effective and efficient and at the same time environmentally friendly. Different technologies and equipment have potential to produce variations in operational effectiveness, environmental impacts, and manufacturing costs in cement manufacturing industries. Therefore, this work aims to present the sustainability assessment of cement plants by taking into consideration of environmental, social, and economic impacts. Three cement production plants located in Western Indonesian are used as case studies where social impact and environmental impact are evaluated via life cycle assessment (LCA) model. This model is integrated with analytic hierarchy process (AHP), a multi-criteria decision analysis tool in selecting the most sustainable cement manufacturing plant.


Assuntos
Materiais de Construção , Meio Ambiente , Indonésia , Indústria Manufatureira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA