Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 118: 109289, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401398

RESUMO

Multidrug resistance protein 1 (MRP1/ABCC1) actively transports a variety of drugs, toxic molecules and important physiological substrates across the plasma membrane. It can confer broad-spectrum multidrug resistance and can decrease the bioavailability of many important drugs. Substrates of MRP1 include anti-cancer agents, antibiotics, antivirals, antidepressants and anti-inflammatory drugs. Using calcein as a fluorescent reporter in a high content uptake assay, we recently reported the identification of 12 MRP1 inhibitors after screening an anti-cancer library of 386 compounds. Here, we describe the development of a new high content imaging-based uptake assay using doxorubicin as a fluorescent reporter. Screening the same anti-cancer library of 386 compounds, the new assay identified a total of 28 MRP1 inhibitors including 16 inhibitors that have not been previously reported as inhibitors of MRP1. Inhibition of MRP1 activity was confirmed using flow cytometry and confocal microscopy-based transport assays. Six drugs (afatinib, celecoxib, doramapimod, mifepristone, MK-2206 and rosiglitazone) were evaluated for their ability to reverse resistance of MRP1-overexpressing H69AR lung cancer cells against vincristine, doxorubicin and etoposide. Mifepristone and doramapimod were most effective in reversal of resistance against vincristine while mifepristone and rosiglitazone were most successful in resensitizing H69AR cells against doxorubicin. Furthermore, resistance towards etoposide was completely reversed in the presence of celecoxib or doramapimod. Selected drugs were also evaluated for resistance reversal in HEK cells that overexpress P-glycoprotein or breast cancer resistance protein. Our results indicate mifepristone and doramapimod as pan inhibitors of these three drug transporters while celecoxib exhibited selective MRP1 inhibition. Together, our findings signify the importance of MRP1 in drug discovery and demonstrate the effectiveness and value of doxorubicin-based high content screening approach. Anti-cancer agents that exhibit MRP1 inhibition may be used to reverse multidrug resistance or to improve the efficacy and reduce the toxicity of various cancer chemotherapies. On the other hand, anti-cancer drugs that did not interact with MRP1 carry a low risk for developing MRP1-mediated resistance.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fluoresceínas/química , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Bioensaio , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transporte Proteico/efeitos dos fármacos , Reprodutibilidade dos Testes
2.
Pharmaceutics ; 10(4)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322148

RESUMO

Multidrug resistance protein 1 (MRP1) can efflux a wide variety of molecules including toxic chemicals, drugs, and their derivatives out of cells. Substrates of MRP1 include anti-cancer agents, antibiotics, anti-virals, anti-human immunodeficiency virus (HIV), and many other drugs. To identify novel substrates and modulators of MRP1 by exploiting intramolecular fluorescence resonance energy transfer (FRET), we genetically engineered six different two-color MRP1 proteins by changing green fluorescent protein (GFP) insertion sites, while keeping the red fluorescent protein (RFP) at the C-terminal of MRP1. Four of six recombinant proteins showed normal expression, localization, and transport activity. We quantified intramolecular FRET using ensemble fluorescence spectroscopy in response to binding of known substrate or ATP alone, substrate/ATP, and trapping of the transporter in closed conformation by vanadate. Recombinant MRP1 proteins GR-881, GR-888, and GR-905 exhibited reproducible and higher FRET changes under all tested conditions and are very promising for use as MRP1 biosensors. Furthermore, we used GR-881 to screen 40 novel anti-cancer drugs and identified 10 hits that potentially directly interact with MRP1 and could be substrates or modulators. Profiling of drug libraries for interaction with MRP1 can provide very useful information to improve the efficacy and reduce the toxicity of various therapies.

3.
Drug Metab Dispos ; 46(12): 1856-1866, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232176

RESUMO

Efflux transporters P-glycoprotein (P-gp/ABCB1), multidrug resistance protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) can affect the efficacy and toxicity of a wide variety of drugs and are implicated in multidrug resistance (MDR). Eight test compounds, recently identified from an intramolecular FRET-based high throughput screening, were characterized for their interaction with MRP1. We report that the active metabolite of vitamin D3, calcitriol, and its analog calcipotriol are selectively cytotoxic to MRP1-overexpressing cells, besides inhibiting transport function of P-gp, MRP1, and BCRP. Calcitriol and calcipotriol consistently displayed a potent inhibitory activity on MRP1-mediated doxorubicin and calcein efflux in MRP1-overexpressing H69AR and HEK293/MRP1 cells. Vesicular transport studies confirmed a strong inhibitory effect of calcitriol and calcipotriol on MRP1-mediated uptake of tritium-labeled estradiol glucuronide and leukotriene C4 In cytotoxicity assays, MRP1-overexpressing cells exhibited hypersensitivity toward calcitriol and calcipotriol. Such collateral sensitivity, however, was not observed in HEK293/P-gp and HEK293/BCRP cells, although the vitamin D3 analogs inhibited calcein efflux in P-gp-overexpressing cells, and mitoxantrone efflux in BCRP-overexpressing cells. The selective cytotoxicity of calcitriol and calpotriol toward MRP1 over-expressing cells can be eliminated with MRP1 inhibitor MK571. Our data indicate a potential role of calcitriol and its analogs in targeting malignancies in which MRP1 expression is prominent and contributes to MDR.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Calcitriol/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos , Transporte Biológico , Calcitriol/análogos & derivados , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cães , Doxorrubicina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
4.
Pharmacol Res ; 119: 313-326, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258008

RESUMO

Multidrug resistance protein 1 (MRP1/ABCC1), an integral transmembrane efflux transporter, belongs to the ATP-binding cassette (ABC) protein superfamily. MRP1 governs the absorption and disposition of a wide variety of endogenous and xenobiotic substrates including various drugs across organs and physiological barriers. Additionally, its overexpression has been implicated in multidrug resistance in chemotherapy of multiple cancers. Here, we describe the development of a high content imaging-based screening assay for MRP1 activity. This live cell-based automated microscopy assay is very robust and allows simultaneous detection of cell permeable, non-toxic and potent inhibitors. The validity of the assay was demonstrated by profiling a library of 386 anti-cancer compounds, which are under clinical trials, for interactions with MRP1. The assay identified 12 potent inhibitors including two known MRP1 inhibitors, cyclosporine A and rapamycin. On the other hand, MRP1-inhibitory activity of tipifarnib, AZD1208, deforolimus, everolimus, temsirolimus, HS-173, YM201636, ESI-09, TAK-733, and CX-6258 has not been previously reported. Inhibition of MRP1 activity was further validated using flow cytometry and confocal microscopy for the respective detection of calcein and doxorubicin in MRP1-overexpressing cells. Among the identified compounds, tipifarnib, AZD1208, rapamycin, deforolimus, everolimus, TAK-733, and temsirolimus resensitized MRP1-overexpressing H69AR cells towards vincristine, a cytotoxic chemotherapeutic agent, by 2-6-fold. Using purified HEK293 membrane vesicles overexpressing MRP1, MRP2, MRP3, and MRP4, we also demonstrated that the identified compounds exert differential and selective response on the uptake of estradiol glucuronide, an endogenous MRP substrate. In summary, we demonstrated the effectiveness of the high content imaging-based high-throughput assay for profiling compound interaction with MRP1.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Linhagem Celular , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
5.
Mol Nutr Food Res ; 58(11): 2099-110, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25044854

RESUMO

SCOPE: Hops (Humulus lupulus L.) produce unique prenylflavonoids that exhibit interesting bioactivities. This study investigates the interactions between selected prenylflavonoids and breast cancer resistance protein (BCRP/ABCG2), an efflux transporter important for xenobiotic bioavailability and multidrug resistance (MDR). METHODS AND RESULTS: ABCG2-inhibitory activity of xanthohumol (XN), isoxanthohumol (IX), 6-prenylnaringenin (6-PN), 8-prenylnaringenin (8-PN), and 6,8-diprenylnarigenin (6,8-diPN) was evaluated using mitoxantrone accumulation and vesicular transport assays. XN, IX, and 8-PN were tested for a substrate-type relationship with ABCG2 using ATPase and bidirectional transport assays. The prenylflavonoids exhibited significant ABCG2-inhibitory activities in mitoxantrone accumulation and vesicular transport assays. In the ATPase assay, XN, IX, and 8-PN inhibited baseline and sulfasalazine-stimulated ATPase activities with IC50 of 2.16-27.0 µM. IX and 8-PNalso displayed bell-shaped activation curves in Ko143-suppressed membranes, indicating a substrate-type relationship. For IX, efflux ratios of 1.25 ± 0.21 and 9.18 ± 0.56 were observed in wild type and ABCG2-overexpressing MDCKII cell monolayers, respectively. The latter was reduced to 1.25 ± 0.15 in the presence of the ABCG2-specific inhibitor Ko143, demonstrating an ABCG2-mediated efflux of IX. Additionally, evidence was shown for the involvement of ABCG2 in the efflux of 8-PN and/or its sulfate conjugate. CONCLUSION: Prenylflavonoids are potent inhibitors of ABCG2 and therefore implicated in ABCG2-mediated food/herb-drug interactions and MDR. ABCG2-mediated efflux of prenylflavonoids may represent one mechanism that regulates prenylflavonoid bioavailability.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Flavonoides/química , Regulação Neoplásica da Expressão Gênica , Humulus/química , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/química , Disponibilidade Biológica , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Flavanonas/química , Células HEK293 , Interações Ervas-Drogas , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitoxantrona/química , Proteínas de Neoplasias/genética , Fitoestrógenos/química , Propiofenonas/química , Xantonas/química , Xenobióticos/química
6.
Eur J Pharmacol ; 723: 346-52, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24269959

RESUMO

Polyacetylenes of the falcarinol type are present in vegetables such as carrots and parsley. They display interesting bioactivities and hold potential as health-promoting and therapeutic agents. In this study, falcarinol, falcarindiol, falcarindiol 3-acetate and falcarindiol 3,8-diacetate were examined for their modulation on breast cancer resistance protein (BCRP/ABCG2), an efflux transporter important for xenobiotic absorption and disposition, and multidrug resistance in cancer. Falcarinol, falcarindiol, and falcarindiol 3-acetate were extracted from carrots and falcarindiol 3,8-diacetate prepared from falcarindiol. Their modulatory effects on ABCG2 were studied using three methods-mitoxantrone accumulation, vesicular transport, and ATPase assay. The polyacetylenes inhibited mitoxantrone (an ABCG2 substrate) efflux in ABCG2-overexpressing HEK293 cells. The inhibitory effect was confirmed in the vesicular transport assay, in which concentration-dependent inhibition of methotrexate (an ABCG2 substrate) uptake into ABCG2-overexpressing Sf9 membrane vesicles was observed (IC50=19.7-41.7µM). The polyacetylenes also inhibited baseline and sulfasalazine-stimulated vanadate-sensitive ATPase activities in ABCG2-overexpressing Sf9 membrane vesicles (IC50=19.3-79.3µM). This is the first report of an inhibitory effect of polyacetylenes on ABCG2. These results indicate a prospective use of polyacetylenes as multidrug resistance reversal agents, a possible role of ABCG2 in the absorption and disposition of polyacetylenes, and potential food-drug interactions between polyacetylene-rich foods and ABCG2 substrate drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Compostos Fitoquímicos/farmacologia , Poli-Inos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Mitoxantrona/farmacologia , Proteínas de Neoplasias/metabolismo
7.
Food Chem ; 138(4): 2267-74, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23497885

RESUMO

Breast cancer resistance protein (BCRP/ABCG2) plays an important role in determining the absorption and disposition of consumed xenobiotics including various drugs and dietary phytochemicals and is also one of the prominent efflux transporters involved in multidrug resistance (MDR). In this study, we have investigated the interactions between ABCG2 and 56 naturally-occurring phytochemicals including phenolic acids, flavonoids, triterpenes and other common dietary phytochemicals, as well as two non plant-based compounds (hippuric acid and propyl gallate) using cell- and membrane-based transport inhibition assays. Of the non-flavonoid phytochemicals tested, berberine, celastrol, ellagic acid, limonin, oleanolic acid, propyl gallate, sinapic acid and ursolic acid demonstrated significant inhibition of ABCG2-mediated transport. Chrysoeriol, laricitrin, myricetin 3',4',5'-trimethylether, pinocembrin, quercitrin, tamarixetin, tricetin and tricetin 3',4',5'-trimethylether were also identified as novel flavonoid ABCG2 inhibitors. The identified inhibitory activity of dietary phytochemicals on ABCG2 provides a framework for further investigation of ABCG2-modulated phytochemical bioavailability, MDR, and possible food-drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Regulação para Baixo , Proteínas de Neoplasias/química , Extratos Vegetais/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Linhagem Celular , Suplementos Nutricionais/análise , Interações Alimento-Droga , Humanos , Proteínas de Neoplasias/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA