Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(19): 1501-1515, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38223978

RESUMO

BACKGROUND: During the neonatal stage, the cardiomyocyte undergoes a constellation of molecular, cytoarchitectural, and functional changes known collectively as cardiomyocyte maturation to increase myocardial contractility and cardiac output. Despite the importance of cardiomyocyte maturation, the molecular mechanisms governing this critical process remain largely unexplored. METHODS: We leveraged an in vivo mosaic knockout system to characterize the role of Carm1, the founding member of protein arginine methyltransferase, in cardiomyocyte maturation. Using a battery of assays, including immunohistochemistry, immuno-electron microscopy imaging, and action potential recording, we assessed the effect of loss of Carm1 function on cardiomyocyte cell growth, myofibril expansion, T-tubule formation, and electrophysiological maturation. Genome-wide transcriptome profiling, H3R17me2a chromatin immunoprecipitation followed by sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing were used to investigate the mechanisms by which CARM1 (coactivator-associated arginine methyltransferase 1) regulates cardiomyocyte maturation. Finally, we interrogated the human syntenic region to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks for single-nucleotide polymorphisms associated with human heart diseases. RESULTS: We report that mosaic ablation of Carm1 disrupts multiple aspects of cardiomyocyte maturation cell autonomously, leading to reduced cardiomyocyte size and sarcomere thickness, severe loss and disorganization of T tubules, and compromised electrophysiological maturation. Genomics study demonstrates that CARM1 directly activates genes that underlie cardiomyocyte cytoarchitectural and electrophysiological maturation. Moreover, our study reveals significant enrichment of human heart disease-associated single-nucleotide polymorphisms in the human genomic region syntenic to the H3R17me2a chromatin immunoprecipitation followed by sequencing peaks. CONCLUSIONS: This study establishes a critical and multifaceted role for CARM1 in regulating cardiomyocyte maturation and demonstrates that deregulation of CARM1-dependent cardiomyocyte maturation gene expression may contribute to human heart diseases.


Assuntos
Epigênese Genética , Miócitos Cardíacos , Proteína-Arginina N-Metiltransferases , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
2.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195702

RESUMO

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Assuntos
Melanoma , Receptor de Fator de Crescimento Neural , Humanos , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Tropomiosina , Melanoma/terapia , Receptor trkA/genética , Receptor trkA/metabolismo , Citoproteção , Inibidores de Checkpoint Imunológico , Células T de Memória , Terapia de Imunossupressão , Imunoterapia , Receptores de Antígenos de Linfócitos T
3.
Adv Sci (Weinh) ; 11(2): e2303489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964763

RESUMO

The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine play critical roles in protein synthesis and energy metabolism. Despite their widespread use as nutritional supplements, BCAAs' full effects on mammalian physiology remain uncertain due to the complexities of BCAA metabolic regulation. Here a novel mechanism linking intrinsic alterations in BCAA metabolism is identified to cellular senescence and the senescence-associated secretory phenotype (SASP), both of which contribute to organismal aging and inflammation-related diseases. Altered BCAA metabolism driving the SASP is mediated by robust activation of the BCAA transporters Solute Carrier Family 6 Members 14 and 15 as well as downregulation of the catabolic enzyme BCAA transaminase 1 during onset of cellular senescence, leading to highly elevated intracellular BCAA levels in senescent cells. This, in turn, activates the mammalian target of rapamycin complex 1 (mTORC1) to establish the full SASP program. Transgenic Drosophila models further indicate that orthologous BCAA regulators are involved in the induction of cellular senescence and age-related phenotypes in flies, suggesting evolutionary conservation of this metabolic pathway during aging. Finally, experimentally blocking BCAA accumulation attenuates the inflammatory response in a mouse senescence model, highlighting the therapeutic potential of modulating BCAA metabolism for the treatment of age-related and inflammatory diseases.


Assuntos
Aminoácidos de Cadeia Ramificada , Fenótipo Secretor Associado à Senescência , Animais , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
4.
Mol Plant ; 16(11): 1847-1865, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822080

RESUMO

Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Receptor de Proteína C Endotelial , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Enzimas Desubiquitinantes , Solo
5.
Nature ; 621(7978): 423-430, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674078

RESUMO

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Assuntos
Códon de Iniciação , Conformação de Ácido Nucleico , RNA de Cadeia Dupla , RNA Mensageiro , Humanos , Arabidopsis/genética , Arabidopsis/imunologia , Códon de Iniciação/genética , Reconhecimento da Imunidade Inata , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Ribossomos/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Aprendizado Profundo
6.
Cell Res ; 33(7): 516-532, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169907

RESUMO

Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.


Assuntos
Células Endoteliais , Trombomodulina , Animais , Senescência Celular , Cirrose Hepática/tratamento farmacológico , Transdução de Sinais , Apoptose , Mamíferos
7.
Nat Cell Biol ; 24(2): 230-241, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145222

RESUMO

Many cancers have an unusual dependence on glutamine. However, most previous studies have focused on the contribution of glutamine to metabolic building blocks and the energy supply. Here, we report that cancer cells with aberrant expression of glutamate decarboxylase 1 (GAD1) rewire glutamine metabolism for the synthesis of γ-aminobutyric acid (GABA)-a prominent neurotransmitter-in non-nervous tissues. An analysis of clinical samples reveals that increased GABA levels predict poor prognosis. Mechanistically, we identify a cancer-intrinsic pathway through which GABA activates the GABAB receptor to inhibit GSK-3ß activity, leading to enhanced ß-catenin signalling. This GABA-mediated ß-catenin activation both stimulates tumour cell proliferation and suppresses CD8+ T cell intratumoural infiltration, such that targeting GAD1 or GABABR in mouse models overcomes resistance to anti-PD-1 immune checkpoint blockade therapy. Our findings uncover a signalling role for tumour-derived GABA beyond its classic function as a neurotransmitter that can be targeted pharmacologically to reverse immunosuppression.


Assuntos
Proliferação de Células , Neoplasias/metabolismo , Evasão Tumoral , Microambiente Tumoral/imunologia , beta Catenina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células A549 , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptores de GABA-B/metabolismo , Carga Tumoral , Evasão Tumoral/efeitos dos fármacos , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
8.
Front Plant Sci ; 12: 771850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069626

RESUMO

Soybean pubescence plays an important role in insect resistance, drought tolerance, and other stresses. Hence, a deep understanding of the molecular mechanism underlying pubescence is a prerequisite to a deeper understanding of insect resistance and drought tolerance. In the present study, quantitative trait loci (QTL) mapping of pubescence traits was performed using a high-density inter-specific linkage map of one recombinant inbred line (RIL) population, designated NJRINP. It was observed that pubescence length (PL) was negatively correlated with pubescence density (PD). A total of 10 and 9 QTLs distributed on six and five chromosomes were identified with phenotypic variance (PV) of 3.0-9.9% and 0.8-15.8% for PL and PD, respectively, out of which, eight and five were novel. Most decreased PL (8 of 10) and increased PD (8 of 9) alleles were from the wild soybean PI 342618B. Based on gene annotation, Protein ANalysis THrough Evolutionary Relationships and literature search, 21 and 12 candidate genes were identified related to PL and PD, respectively. In addition, Glyma.12G187200 from major QTLs qPL-12-1 and qPD-12-2, was identified as Ps (sparse pubescence) before, having an expression level of fivefold greater in NN 86-4 than in PI 342618B, hence it might be the candidate gene that is conferring both PL and PD. Based on gene expression and cluster analysis, three and four genes were considered as the important candidate genes of PL and PD, respectively. Besides, leaves with short and dense (SD) pubescence, which are similar to the wild soybean pubescence morphology, had the highest resistance to common cutworm (CCW) in soybean. In conclusion, the findings in the present study provide a better understanding of genetic basis and candidate genes information of PL and PD and the relationship with resistance to CCW in soybean.

9.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358072

RESUMO

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Histonas/metabolismo , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Cristalografia por Raios X , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos
10.
J Integr Plant Biol ; 62(11): 1703-1716, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32396248

RESUMO

Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi-subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early-flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA-seq analysis indicated that the fha2 mutant affects a subset of RLT1/2-regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Nucleares/genética , Nucleossomos/metabolismo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia
11.
EMBO J ; 39(7): e102008, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32115743

RESUMO

Deposition of H2A.Z in chromatin is known to be mediated by a conserved SWR1 chromatin-remodeling complex in eukaryotes. However, little is known about whether and how the SWR1 complex cooperates with other chromatin regulators. Using immunoprecipitation followed by mass spectrometry, we found all known components of the Arabidopsis thaliana SWR1 complex and additionally identified the following three classes of previously uncharacterized plant-specific SWR1 components: MBD9, a methyl-CpG-binding domain-containing protein; CHR11 and CHR17 (CHR11/17), ISWI chromatin remodelers responsible for nucleosome sliding; and TRA1a and TRA1b, accessory subunits of the conserved NuA4 histone acetyltransferase complex. MBD9 directly interacts with CHR11/17 and the SWR1 catalytic subunit PIE1, and is responsible for the association of CHR11/17 with the SWR1 complex. MBD9, TRA1a, and TRA1b function as canonical components of the SWR1 complex to mediate H2A.Z deposition. CHR11/17 are not only responsible for nucleosome sliding but also involved in H2A.Z deposition. These results indicate that the association of the SWR1 complex with CHR11/17 may facilitate the coupling of H2A.Z deposition with nucleosome sliding, thereby co-regulating gene expression, development, and flowering time.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Histona Acetiltransferases/metabolismo , Nucleossomos/metabolismo , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo
12.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104406

RESUMO

In eukaryotes, heterochromatin regions are typically subjected to transcriptional silencing. DNA methylation has an important role in such silencing and has been studied extensively. However, little is known about how methylated heterochromatin regions are subjected to silencing. We conducted a genetic screen and identified an epcr (enhancer of polycomb-related) mutant that releases heterochromatin silencing in Arabidopsis thaliana We demonstrated that EPCR1 functions redundantly with its paralog EPCR2 and interacts with PWWP domain-containing proteins (PWWPs), AT-rich interaction domain-containing proteins (ARIDs), and telomere repeat binding proteins (TRBs), thus forming multiple functionally redundant protein complexes named PEAT (PWWPs-EPCRs-ARIDs-TRBs). The PEAT complexes mediate histone deacetylation and heterochromatin condensation and thereby facilitate heterochromatin silencing. In heterochromatin regions, the production of small interfering RNAs (siRNAs) and DNA methylation is repressed by the PEAT complexes. The study reveals how histone deacetylation, heterochromatin condensation, siRNA production, and DNA methylation interplay with each other and thereby maintain heterochromatin silencing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Inativação Gênica/fisiologia , Heterocromatina/metabolismo , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Acetilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Heterocromatina/genética , Histonas/genética , Complexos Multiproteicos/genética
13.
Nat Commun ; 7: 11715, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273316

RESUMO

Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Inativação Gênica , Histonas/metabolismo , Acetilação , Proteínas de Arabidopsis/química , Desmetilação do DNA , Metilação de DNA , Loci Gênicos , Modelos Biológicos , Mutação/genética , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...