Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(31): 38049-38055, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493635

RESUMO

Singlet fission (SF) materials have been applied in various types of solar cells to pursue higher power conversion efficiency (PCE) beyond the Shockley-Queisser (SQ) limit. SF implementation in perovskite solar cells has not been successfully realized yet due to the insufficient understanding of the SF/perovskite heterojunctions. In this work, we attempt to elucidate the charge dynamics of an SF/perovskite system by incorporating a well-known SF molecule, TIPS-pentacene, and a triple-cation perovskite Cs0.05(FA0.85MA0.15)0.95PbI2.55Br0.45, owing to their well-matched energy structures. The transient absorption spectra and kinetic fitting plots suggest an electron-transfer process from the triplet state of TIPS-pentacene to perovskite in the picosecond regime, which increases the carrier density by 20% in the perovskite layer. This work confirms the existence of an electron-transfer process between the SF material and perovskite, providing a pathway to SF-enhanced perovskite solar cells.

2.
Nat Commun ; 14(1): 1433, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36918559

RESUMO

Various topological laser concepts have recently enabled the demonstration of robust light-emitting devices that are immune to structural deformations and tolerant to fabrication imperfections. Current realizations of photonic cavities with topological boundaries are often limited by outcoupling issues or poor directionality and require complex design and fabrication that hinder operation at small wavelengths. Here we propose a topological cavity design based on interface states between two one-dimensional photonic crystals with distinct Zak phases. Using a few monolayers of solution-processed all-inorganic cesium lead halide perovskite quantum dots as the ultrathin gain medium, we demonstrate a lithography-free, vertical-emitting, low-threshold, and single-mode laser emitting in the green. We show that the topological laser, akin to vertical-cavity surface-emitting lasers (VCSELs), is robust against local perturbations of the multilayer structure. We argue that the design simplicity and reduction of the gain medium thickness enabled by the topological cavity make this architecture suitable for low-cost and efficient quantum dot vertical emitting lasers operating across the visible spectral region.

3.
ACS Nano ; 16(2): 2942-2952, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35040632

RESUMO

Extending halide perovskites' optoelectronic properties to stimuli-responsive chromism enables switchable optoelectronics, information display, and smart window applications. Here, we demonstrate a band gap tunability (chromism) via crystal structure transformation from three-dimensional FAPbBr3 to a ⟨110⟩ oriented FAn+2PbnBr3n+2 structure using a mono-halide/cation composition (FA/Pb) tuning. Furthermore, we illustrate reversible photochromism in halide perovskite by modulating the intermediate n phase in the FAn+2PbnBr3n+2 structure, enabling greater control of the optical band gap and luminescence of a ⟨110⟩ oriented mono-halide/cation perovskite. Proton transfer reaction-mass spectroscopy carried out to precisely quantify the decomposition product reveals that the organic solvent in the film is a key contributor to the structural transformation and, therefore, the chromism in the ⟨110⟩ structure. These intermediate n phases (2 ≤ n ≤ ∞) stabilize in metastable states in the FAn+2PbnBr3n+2 system, which is accessible via strain or optical or thermal input. The structure reversibility in the ⟨110⟩ perovskite allowed us to demonstrate a class of photochromic sensors capable of self-adaptation to lighting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...