Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(6): 1664-1673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417790

RESUMO

Accounting for variability in plasma protein binding of drugs is an essential input to physiologically-based pharmacokinetic (PBPK) models of special populations. Prediction of fraction unbound in plasma (fu) in such populations typically considers changes in plasma protein concentration while assuming that the binding affinity remains unchanged. A good correlation between predicted vs observed fu data reported for various drugs in a given special population is often used as a justification for such predictive methods. However, none of these analyses evaluated the prediction of the fold-change in fu in special populations relative to the reference population. This would be a more appropriate assessment of the predictivity, analogous to drug-drug interactions. In this study, predictive performance of the single protein binding model was assessed by predicting fu for alpha-1-acid glycoprotein and albumin bound drugs in hepatic impairment, renal impairment, paediatric, elderly, patients with inflammatory disease, and in different ethnic groups for a dataset of >200 drugs. For albumin models, the concordance correlation coefficients for predicted fu were >0.90 for 16 out of 17 populations with sub-groups, indicating strong agreement between predicted and observed values. In contrast, concordance correlation coefficients for predicted fold-change in fu for the same dataset were <0.38 for all populations and sub-groups. Trends were similar for alpha-1-acid glycoprotein models. Accordingly, the predictions of fu solely based on changes in protein concentrations in plasma cannot explain the observed values in some special populations. We recommend further consideration of the impact of changes in special populations to endogenous substances that competitively bind to plasma proteins, and changes in albumin structure due to posttranslational modifications. PBPK models of special populations for highly bound drugs should preferably use measured fu data to ensure reliable prediction of drug exposure or compare predicted unbound drug exposure between populations knowing that these will not be sensitive to changes in fu.


Assuntos
Proteínas Sanguíneas , Modelos Biológicos , Ligação Proteica , Humanos , Proteínas Sanguíneas/metabolismo , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/sangue , Orosomucoide/metabolismo , Idoso , Criança , Farmacocinética
2.
Clin Pharmacol Ther ; 114(6): 1243-1253, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620246

RESUMO

Monitoring endogenous biomarkers is increasingly used to evaluate transporter-mediated drug-drug interactions (DDIs) in early drug development and may be applied to elucidate changes in transporter activity in disease. 4-pyridoxic acid (PDA) has been identified as the most sensitive plasma endogenous biomarker of renal organic anion transporters (OAT1/3). Increase in PDA baseline concentrations was observed after administration of probenecid, a strong clinical inhibitor of OAT1/3 and also in patients with chronic kidney disease (CKD). The aim of this study was to develop and verify a physiologically-based pharmacokinetic (PBPK) model of PDA, to predict the magnitude of probenecid DDI and predict the CKD-related changes in PDA baseline. The PBPK model for PDA was first developed in healthy population, building on from previous population pharmacokinetic modeling, and incorporating a mechanistic kidney model to consider OAT1/3-mediated renal secretion. Probenecid PBPK model was adapted from the Simcyp database and re-verified to capture its dose-dependent pharmacokinetics (n = 9 studies). The PBPK model successfully predicted the PDA plasma concentrations, area under the curve, and renal clearance in healthy subjects at baseline and after single/multiple probenecid doses. Prospective simulations in severe CKD predicted successfully the increase in PDA plasma concentration relative to healthy (within 2-fold of observed data) after accounting for 60% increase in fraction unbound in plasma and additional 50% decline in OAT1/3 activity beyond the decrease in glomerular filtration rate. The verified PDA PBPK model supports future robust evaluation of OAT1/3 DDI in drug development and increases our confidence in predicting exposure and renal secretion in patients with CKD.


Assuntos
Ácido Piridóxico , Insuficiência Renal Crônica , Humanos , Probenecid/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Rim , Interações Medicamentosas , Biomarcadores , Modelos Biológicos
3.
Environ Sci Technol ; 57(17): 6825-6834, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37072124

RESUMO

Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life (t1/2) in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its t1/2. Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent t1/2 of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3-3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.


Assuntos
Caprilatos , Fluorocarbonos , Humanos , Toxicocinética , Fluorocarbonos/farmacocinética , Medição de Risco , Proteínas de Membrana Transportadoras , Modelos Biológicos
4.
Clin Pharmacol Ther ; 112(3): 643-652, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35569107

RESUMO

There is growing evidence that active tubular secretory clearance (CLs ) may not decline proportionally with the glomerular filtration rate (GFR) in chronic kidney disease (CKD), leading to the overestimation of renal clearance (CLr ) when using solely GFR to approximate disease effect on renal elimination. The clinical pharmacokinetic data of 33 renally secreted OAT1/3 substrates were collated to investigate the impact of mild, moderate, and severe CKD on CLr , tubular secretion and protein binding (fu,p ). The fu,p of the collated substrates ranged from 0.0026 to 1.0 in healthy populations; observed CKD-related increase in the fu,p (up to 2.7-fold) of 8 highly bound substrates (fu,p ≤ 0.2) was accounted for in the analysis. Use of prediction equation based on disease-related changes in albumin resulted in underprediction of the CKD-related increase in fu,p of highly bound substrates, highlighting the necessity to measure protein binding in severe CKD. The critical analysis of clinical data for 33 OAT1/3 probes established that decrease in OAT1/3 activity proportional to the changes in GFR was insufficient to recapitulate effects of severe CKD on unbound tubular secretion clearance. OAT1/3-mediated CLs was estimated to decline by an additional 50% relative to the GFR decline in severe CKD, whereas change in active secretion in mild and moderate CKD was proportional to GFR. Consideration of this additional 50% decline in OAT1/3-mediated CLs is recommended for physiologically-based pharmacokinetic models and dose adjustment of OAT1/3 substrates in severe CKD, especially for substrates with high contribution of the active secretion to CLr .


Assuntos
Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Taxa de Filtração Glomerular , Humanos , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Eliminação Renal , Insuficiência Renal Crônica/metabolismo
5.
Clin Pharmacol Ther ; 108(6): 1176-1184, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32767755

RESUMO

Lopinavir/ritonavir, originally developed for treating HIV, is currently undergoing clinical studies for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although recent reports suggest that lopinavir exhibits in vitro efficacy against SARS-CoV-2, it is a highly protein-bound drug and it remains unknown if it reaches adequate in vivo unbound (free) concentrations in lung tissue. We built a physiologically-based pharmacokinetic model of lopinavir/ritonavir in white and Chinese populations. Our aim was to perform pharmacokinetic/pharmacodynamic correlations by comparing simulated free plasma and lung concentration values achieved using different dosing regimens of lopinavir/ritonavir with unbound half-maximal effective concentration (EC50,unbound ) and unbound effective concentration 90% values of lopinavir against SARS-CoV-2. The model was validated against multiple observed clinical datasets for single and repeated dosing of lopinavir/ritonavir. Predicted pharmacokinetic parameters, such as the maximum plasma concentration, area under the plasma concentration-time profile, oral clearance, half-life, and minimum plasma concentration at steady-state were within two-fold of clinical values for both populations. Using the current lopinavir/ritonavir regimen of 400/100 mg twice daily, lopinavir does not achieve sufficient free lung concentrations for efficacy against SARS-CoV-2. Although the Chinese population reaches greater plasma and lung concentrations as compared with whites, our simulations suggest that a significant dose increase from the current clinically used dosing regimen is necessary to reach the EC50,unbound value for both populations. Based on safety data, higher doses would likely lead to QT prolongation and gastrointestinal disorders (nausea, vomiting, and diarrhea), thus, any dose adjustment must be carefully weighed alongside these safety concerns.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Lopinavir/farmacocinética , Ritonavir/farmacocinética , Área Sob a Curva , Povo Asiático , Relação Dose-Resposta a Droga , Infecções por HIV/tratamento farmacológico , Meia-Vida , Humanos , Lopinavir/farmacologia , Pulmão/metabolismo , Taxa de Depuração Metabólica , Modelos Biológicos , Ritonavir/farmacologia , SARS-CoV-2 , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...