Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(8): 5333-5342, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38369932

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) in acid can solve alkalinity issues while highly corrosive and reductive acidic electrolytes usually cause catalyst degradation. Inhibiting catalyst degradation is crucial for the stability of acidic CO2RR. Here, we reveal the microenvironment changes of dynamic Bi-based catalysts and develop a pulse chronoamperometry (CA) strategy to improve the stability of acidic CO2RR. In situ fluorescence mappings show that the local pH changes from neutral to acid, and the in situ Raman spectra reveal the dynamic evolution of interfacial water structures in the microenvironment. We propose that the surface charge properties of dynamic catalysts affect the competitive adsorption of K+ and protons, thereby causing the differences in local pH and CO2RR intermediate adsorption. We also develop a pulse CA strategy to reactivate catalysts, and the stability of acidic CO2RR is improved by 2 orders of magnitude for 100 h operation, which is higher than most reports on the stability of acidic CO2RR. This work gives insights on how microenvironment changes affecting the stability of acidic CO2RR, and provides guidance for designing stable catalysts in acidic electrolytes.

2.
Environ Sci Technol ; 58(5): 2542-2553, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262936

RESUMO

Defluorination is essential to eliminate the antibiotic resistance and detrimental effects of florfenicol (C12H14Cl2FNO4S, FF), which is achievable by sulfidated nanoscale zerovalent iron (S-nZVI), yet a comprehensive understanding of the mechanism is lacking. Herein, we used experimental data and density functional theory calculations to demonstrate four dechlorination-promoted defluorination pathways of FF, depending on S-nZVI or not. FF was defluorinated in a rapid and then slow but continuous manner, accompanying a consecutive dechlorination to deschloro (dFF) and dideschloro FF (ddFF). Unexpectedly, the predominant defluorination occurs by spontaneous hydrolysis of ddFF to form the hydrolyzed byproduct (HO-ddFF), i.e., independent of S-nZVI, which is initiated by intramolecular attack from carbonyl O to alkyl F and is thus limited for FF and dFF owing to the diminished nucleophilicity by electron-withdrawing Cl. The removal of Cl also makes the reductive defluorination of ddFF by S-nZVI amenable. The other two minor but more rapid defluorination pathways occur in synergy with the dechlorination of FF and dFF, which are mediated by the reactive carbanion intermediates and generate HO-dFF and HO-ddFF, respectively. The reliability of these dechlorination-facilitated defluorination pathways was verified by the consistency of theoretical calculations with experimental data, providing valuable insights into the degradation of fluorinated contaminants.


Assuntos
Tianfenicol/análogos & derivados , Tricloroetileno , Poluentes Químicos da Água , Ferro , Teoria da Densidade Funcional , Reprodutibilidade dos Testes
3.
J Am Chem Soc ; 144(37): 16953-16964, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070362

RESUMO

Organosulfates (OSs) are well-known and ubiquitous constituents of atmospheric aerosol particles and have been used as secondary organic aerosol markers in many field studies. Hence, it is imperative to understand the formation of OS species in the atmosphere. Recently, hydroxy acids (HAs) and hydroxy acid sulfates have been extensively detected in the atmospheric environment. However, the reaction mechanism of HAs to form OSs is much less understood. In this work, we have mainly investigated the reaction of typical α-HAs, including glycolic acid (GA) and lactic acid (LA), and SO3 at the liquid aerosol surface using quantum chemistry calculations and Born-Oppenheimer molecular dynamics simulations. The OH group orientation of α-HAs at the air-water interface is found to exert a significant impact on the formation of OSs. The OH group pointing to the gas phase is obviously beneficial to the formation of OSs. Two key factors are discovered important to the reaction of α-HAs adsorbed on the liquid surface with SO3: (a) the exposure position of the active site to the gas phase and (b) the reactivity of the exposed site to the attracted SO3 molecule. Moreover, we found that the air-water interface exerts a significant influence on the physicochemical behaviors of GA and LA, especially on their OH group orientation, and thus leads to their different properties for the SO3 colliding reaction. The presented reaction mechanism provides a new feasible pathway for the production of OSs at the liquid aerosol surface, which may have important impacts on the formation of organic aerosols.


Assuntos
Sulfatos , Água , Aerossóis/química , Hidroxiácidos , Ácido Láctico , Sulfatos/química
4.
Chemosphere ; 308(Pt 1): 136109, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36007737

RESUMO

New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.


Assuntos
Atmosfera , Iodo , Aerossóis/química , Atmosfera/química , Química Computacional , Humanos , Nitrogênio , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...