Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2306710120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824525

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic and the measures taken by authorities to control its spread have altered human behavior and mobility patterns in an unprecedented way. However, it remains unclear whether the population response to a COVID-19 outbreak varies within a city or among demographic groups. Here, we utilized passively recorded cellular signaling data at a spatial resolution of 1 km × 1 km for over 5 million users and epidemiological surveillance data collected during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 outbreak from February to June 2022 in Shanghai, China, to investigate the heterogeneous response of different segments of the population at the within-city level and examine its relationship with the actual risk of infection. Changes in behavior were spatially heterogenous within the city and population groups and associated with both the infection incidence and adopted interventions. We also found that males and individuals aged 30 to 59 y old traveled more frequently, traveled longer distances, and their communities were more connected; the same groups were also associated with the highest SARS-CoV-2 incidence. Our results highlight the heterogeneous behavioral change of the Shanghai population to the SARS-CoV-2 Omicron BA.2 outbreak and the effect of heterogenous behavior on the spread of COVID-19, both spatially and demographically. These findings could be instrumental for the design of targeted interventions for the control and mitigation of future outbreaks of COVID-19, and, more broadly, of respiratory pathogens.


Assuntos
COVID-19 , Masculino , Humanos , COVID-19/epidemiologia , China/epidemiologia , SARS-CoV-2 , Surtos de Doenças , Processos Grupais
2.
J Evid Based Med ; 15(4): 385-397, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36513958

RESUMO

OBJECTIVE: Contact tracing plays an essential role in mitigating the impact of an epidemic. During the COVID-19 pandemic, studies of those who have been in close contact with confirmed cases offer critical insights to understand the epidemiological characteristics of SARS-CoV-2 better. This study conducts a meta-analysis of existing studies' infection rates and affecting factors. METHODS: We searched PubMed, Web of Science and CNKI from the inception to April 30 2022 to identify systematic reviews. Two reviewers independently extracted the data and assessed risk of bias. Meta-analyses were conducted to calculate pooled estimates by using Stata/SE 15.1 software. RESULTS: There were 47 studies in the meta-analysis. Among COVID-19 close contacts, older age (RR = 1.94, 95% CI: 1.70, 2.21), contacts in households (RR = 2.83, 95% CI: 2.20, 3.65), and people in close contact with symptomatic infections (RR = 3.62, 95% CI: 1.88, 6.96) were associated with higher infection rates. CONCLUSION: On average, each primary infection corresponded to 5.8 close contacts. Among COVID-19 close contacts, older age and contacts in households were associated with higher infection rates, and people in close contact with symptomatic infections had three times higher risk of infection compared to people in close contact with asymptomatic infections. In general, there are significantly more studies from China about close contacts, and the infection rate among close contacts was lower compared to other countries.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Busca de Comunicante , China/epidemiologia
3.
China CDC Wkly ; 4(40): 885-889, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36285319

RESUMO

Introduction: Minimizing the importation and exportation risks of coronavirus disease 2019 (COVID-19) is a primary concern for sustaining the "Dynamic COVID-zero" strategy in China. Risk estimation is essential for cities to conduct before relaxing border control measures. Methods: Informed by the daily number of passengers traveling between 367 prefectures (cities) in China, this study used a stochastic metapopulation model parameterized with COVID-19 epidemic characteristics to estimate the importation and exportation risks. Results: Under the transmission scenario (R0 =5.49), this study estimated the cumulative case incidence of Changchun City, Jilin Province as 3,233 (95% confidence interval: 1,480, 4,986) before a lockdown on March 14, 2022, which is close to the 3,168 cases reported in real life by March 16, 2022. In a total of 367 prefectures (cities), 127 (35%) had high exportation risks according to the simulation and could transmit the disease to 50% of all other regions within a period from 17 to 94 days. The average time until a new infection arrives in a location in 1 of the 367 prefectures (cities) ranged from 26 to 101 days. Conclusions: Estimating COVID-19 importation and exportation risks is necessary for preparedness, prevention, and control measures of COVID-19 - especially when new variants emerge.

4.
Natl Sci Rev ; 8(11): nwab148, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34876997

RESUMO

2020 was an unprecedented year, with rapid and drastic changes in human mobility due to the COVID-19 pandemic. To understand the variation in commuting patterns among the Chinese population across stable and unstable periods, we used nationwide mobility data from 318 million mobile phone users in China to examine the extreme fluctuations of population movements in 2020, ranging from the Lunar New Year travel season (chunyun), to the exceptional calm of COVID-19 lockdown, and then to the recovery period. We observed that cross-city movements, which increased substantially in chunyun and then dropped sharply during the lockdown, are primarily dependent on travel distance and the socio-economic development of cities. Following the Lunar New Year holiday, national mobility remained low until mid-February, and COVID-19 interventions delayed more than 72.89 million people returning to large cities. Mobility network analysis revealed clusters of highly connected cities, conforming to the social-economic division of urban agglomerations in China. While the mass migration back to large cities was delayed, smaller cities connected more densely to form new clusters. During the recovery period after travel restrictions were lifted, the netflows of over 55% city pairs reversed in direction compared to before the lockdown. These findings offer the most comprehensive picture of Chinese mobility at fine resolution across various scenarios in China and are of critical importance for decision making regarding future public-health-emergency response, transportation planning and regional economic development, among others.

5.
Front Public Health ; 9: 813234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087790

RESUMO

Background: The measurement and identification of changes in the social structure in response to an exceptional event like COVID-19 can facilitate a more informed public response to the pandemic and provide fundamental insights on how collective social processes respond to extreme events. Objective: In this study, we built a generalized framework for applying social media data to understand public behavioral and emotional changes in response to COVID-19. Methods: Utilizing a complete dataset of Sina Weibo posts published by users in Wuhan from December 2019 to March 2020, we constructed a time-varying social network of 3.5 million users. In combination with community detection, text analysis, and sentiment analysis, we comprehensively analyzed the evolution of the social network structure, as well as the behavioral and emotional changes across four main stages of Wuhan's experience with the epidemic. Results: The empirical results indicate that almost all network indicators related to the network's size and the frequency of social interactions increased during the outbreak. The number of unique recipients, average degree, and transitivity increased by 24, 23, and 19% during the severe stage than before the outbreak, respectively. Additionally, the similarity of topics discussed on Weibo increased during the local peak of the epidemic. Most people began discussing the epidemic instead of the more varied cultural topics that dominated early conversations. The number of communities focused on COVID-19 increased by nearly 40 percent of the total number of communities. Finally, we find a statistically significant "rebound effect" by exploring the emotional content of the users' posts through paired sample t-test (P = 0.003). Conclusions: Following the evolution of the network and community structure can explain how collective social processes changed during the pandemic. These results can provide data-driven insights into the development of public attention during extreme events.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Análise de Sentimentos , Estrutura Social
6.
Chaos ; 29(8): 083120, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472520

RESUMO

Evaluating the significance of nodes or links has always been an important issue in complex networks, and the definition of significance varies with different perspectives. The significance of nodes or links in maintaining the network connectivity is widely discussed due to its application in targeted attacks and immunization. In this paper, inspired by the weak tie phenomenon, we define the links' significance by the dissimilarity of their endpoints. Some link prediction algorithms are introduced to define the dissimilarity of nodes based solely on the network topology. Experiments in synthetic and real networks demonstrate that the method is especially effective in the networks with higher clustering coefficients.

7.
Chaos ; 28(5): 051102, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29857681

RESUMO

Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.

8.
Sci Rep ; 7(1): 7559, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790416

RESUMO

Many real-world systems can be described by scale-free networks with power-law degree distributions. Scale-free networks show a "robust yet fragile" feature due to their heterogeneous degree distributions. We propose to enhance the structural robustness of scale-free networks against intentional attacks by changing the displayed network structure information rather than modifying the network structure itself. We first introduce a simple mathematical model for attack information and investigate the impact of attack information on the structural robustness of scale-free networks. Both analytical and numerical results show that decreasing slightly the attack information perfection by information disturbance can dramatically enhance the structural robustness of scale-free networks. Then we propose an optimization model of disturbance strategies in which the cost constraint is considered. We analyze the optimal disturbance strategies and show an interesting but counterintuitive finding that disturbing "poor nodes" with low degrees preferentially is more effective than disturbing "rich nodes" with high degrees preferentially. We demonstrate the efficiency of our method by comparison with edge addition method and validate the feasibility of our method in two real-world critical infrastructure networks.

9.
Sci Rep ; 6: 37317, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853301

RESUMO

Robustness and small-world effect are two crucial structural features of complex networks and have attracted increasing attention. However, little is known about the relation between them. Here we demonstrate that, there is a conflicting relation between robustness and small-world effect for a given degree sequence. We suggest that the robustness-oriented optimization will weaken the small-world effect and vice versa. Then, we propose a multi-objective trade-off optimization model and develop a heuristic algorithm to obtain the optimal trade-off topology for robustness and small-world effect. We show that the optimal network topology exhibits a pronounced core-periphery structure and investigate the structural properties of the optimized networks in detail.

10.
Sci Rep ; 6: 22916, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26960247

RESUMO

The study of network disintegration has attracted much attention due to its wide applications, including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration of networks with incomplete link information. An effective method is proposed to find the critical nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and real networks suggest that, by using link prediction method to recover partial missing links in advance, the method can largely improve the network disintegration performance. Besides, to our surprise, we find that when the size of missing information is relatively small, our method even outperforms than the results based on complete information. We refer to this phenomenon as the "comic effect" of link prediction, which means that the network is reshaped through the addition of some links that identified by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic of the original one, where the important parts are emphasized.


Assuntos
Algoritmos , Redes Comunitárias , Epidemias/estatística & dados numéricos , Administração Financeira/estatística & dados numéricos , Humanos , Terrorismo/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...