Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 379: 127-35, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17502675

RESUMO

The spike (S) glycoprotein of coronaviruses is known to be essential in the binding of the virus to the host cell at the advent of the infection process. To study the maturation pathway of the S glycoprotein of the severe acute respiratory syndrome (SARS)-coronavirus (CoV) within the host cell, a T7/vaccinia virus-based expression system coupled to immunoprecipitation with anti-S antibodies was used to test and analyze different forms of the S glycoprotein. The state of maturity of the S glycoprotein can be deduced from its sensitivity to hydrolysis by endoglycosidase H (EndoH) or N-glycosidase F (N-Gly F). A fully matured S glycoprotein will be modified with complex oligosaccharides which makes it resistant to cleavage by EndoH but not by N-Gly F. By exploiting this characteristic, it is then possible to determine which forms of the immunoprecipitated S protein are properly processed by the host cell. With this system, many different constructs of the S glycoprotein can be analyzed in parallel thus providing another method by which to study the functional domains of S involved in membrane fusion event that occurs during viral infection.


Assuntos
Glicoproteínas de Membrana/biossíntese , Modificação Traducional de Proteínas/fisiologia , Proteínas Recombinantes/biossíntese , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas do Envelope Viral/biossíntese , Animais , Células COS , Chlorocebus aethiops , Expressão Gênica , Glicosilação , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Glicoproteína da Espícula de Coronavírus , Vaccinia virus/genética , Células Vero , Proteínas do Envelope Viral/análise , Proteínas do Envelope Viral/genética
2.
J Virol ; 81(12): 6346-55, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17428862

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV) 7a protein, which is not expressed by other known coronaviruses, can induce apoptosis in various cell lines. In this study, we show that the overexpression of Bcl-XL, a prosurvival member of the Bcl-2 family, blocks 7a-induced apoptosis, suggesting that the mechanism for apoptosis induction by 7a is at the level of or upstream from the Bcl-2 family. Coimmunoprecipitation experiments showed that 7a interacts with Bcl-XL and other prosurvival proteins (Bcl-2, Bcl-w, Mcl-1, and A1) but not with the proapoptotic proteins (Bax, Bak, Bad, and Bid). A good correlation between the abilities of 7a deletion mutants to induce apoptosis and to interact with Bcl-XL was observed, suggesting that 7a triggers apoptosis by interfering directly with the prosurvival function of Bcl-XL. Interestingly, amino acids 224 and 225 within the C-terminal transmembrane domain of Bcl-XL are essential for the interaction with the 7a protein, although the BH3 domain of Bcl-XL also contributes to this interaction. In addition, fractionation experiments showed that 7a colocalized with Bcl-XL at the endoplasmic reticulum as well as the mitochondria, suggesting that they may form complexes in different membranous compartments.


Assuntos
Apoptose , Proteínas da Matriz Viral/fisiologia , Proteínas Virais/fisiologia , Proteína bcl-X/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Deleção de Genes , Humanos , Imunoprecipitação , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo
3.
Virus Res ; 122(1-2): 20-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16965829

RESUMO

The genome of the severe acute respiratory syndrome coronavirus encodes for eight accessory viral proteins with no known homologues in other coronaviruses. One of these is the 3b protein, which is encoded by the second open reading frame in subgenomic RNA 3 and contains 154 amino acids. Here, a detailed time-course study was performed to compare the apoptosis and necrosis profiles induced by full-length 3b, a 3b mutant that was deleted by 30 amino acids from the C terminus (3bDelta124-154) and the classical apoptosis inducer, Bax. Our results showed that Vero E6 cells transfected with a construct for expressing 3b underwent necrosis as early as 6h after transfection and underwent simultaneous necrosis and apoptosis at later time-points. At all the time-points analysed, the apoptosis induced by the expression of 3b was less than the level induced by Bax but the level of necrosis was comparable. The 3bDelta124-154 mutant behaves in a similar manner indicating that the localization of the 3b protein does not seems to be important for the cell-death pathways since full-length 3b is localized predominantly to the nucleolus, while the mutant is found to be concentrated in the peri-nuclear regions. To our knowledge, this is the first report of the induction of necrosis by a SARS-CoV protein.


Assuntos
Apoptose , Necrose , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas não Estruturais Virais/fisiologia , Animais , Nucléolo Celular/química , Núcleo Celular/química , Chlorocebus aethiops , Fragmentação do DNA , Microscopia de Fluorescência , Deleção de Sequência , Fatores de Tempo , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteína X Associada a bcl-2/fisiologia
4.
Gene ; 377: 46-55, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16781089

RESUMO

Angiotensin-converting enzyme 2 (ACE2), a newly identified member in the renin-angiotensin system (RAS), acts as a negative regulator of ACE. It is mainly expressed in cardiac blood vessels and the tubular epithelia of kidneys and abnormal expression has been implicated in diabetes, hypertension and heart failure. The mechanism and physiological function of this zinc metallopeptidase in mammals are not yet fully understood. Non-mammalian vertebrate models offer attractive and simple alternatives that could facilitate the exploration of ACE2 function. In this paper we report the in silico analysis of Ace2 genes from the Gallus (chicken), Xenopus (frog), Fugu and Tetraodon (pufferfish) genome assembly databases, and from the Danio (zebrafish) cDNA library. Exon ambiguities of Danio and Xenopus Ace2s were resolved by RT-PCR and 3'RACE. Analyses of the exon-intron structures, alignment, phylogeny and hydrophilicity plots, together with the conserved synteny among these vertebrates, support the orthologous relationship between mammalian and non-mammalian ACE2s. The putative promoters of Ace2 from human, Tetraodon and Xenopus tropicalis drove the expression of enhanced green fluorescent protein (EGFP) specifically in the heart tissue of transgenic Xenopus thus making it a suitable model for future functional genomic studies. Additionally, the search for conserved cis-elements resulted in the discovery of WGATAR motifs in all the putative Ace2 promoters from 7 different animals, suggesting a possible role of GATA family transcriptional factors in regulating the expression of Ace2.


Assuntos
Peptidil Dipeptidase A/genética , Vertebrados/genética , Enzima de Conversão de Angiotensina 2 , Animais , Animais Geneticamente Modificados , Sequência de Bases , Galinhas/genética , Mapeamento Cromossômico , DNA Complementar/genética , Éxons , Proteínas de Fluorescência Verde/genética , Humanos , Íntrons , Dados de Sequência Molecular , Peptidil Dipeptidase A/química , Filogenia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Takifugu/genética , Tetraodontiformes/genética , Xenopus/genética , Peixe-Zebra/genética
5.
Biochem Biophys Res Commun ; 343(4): 1201-8, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16580632

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) 7a is an accessory protein with no known homologues. In this study, we report the interaction of a SARS-CoV 7a and small glutamine-rich tetratricopeptide repeat-containing protein (SGT). SARS-CoV 7a and human SGT interaction was identified using a two-hybrid system screen and confirmed with interaction screens in cell culture and cellular co-localization studies. The SGT domain of interaction was mapped by deletion mutant analysis and results indicated that tetratricopeptide repeat 2 (aa 125-158) was essential for interaction. We also showed that 7a interacted with SARS-CoV structural proteins M (membrane) and E (envelope), which have been shown to be essential for virus-like particle formation. Taken together, our results coupled with data from studies of the interaction between SGT and HIV-1 vpu indicated that SGT could be involved in the life-cycle, possibly assembly of SARS-CoV.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Chlorocebus aethiops , Humanos , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Células Vero
6.
J Virol ; 80(2): 941-50, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16378996

RESUMO

We have previously shown that an Escherichia coli-expressed, denatured spike (S) protein fragment of the severe acute respiratory coronavirus, containing residues 1029 to 1192 which include the heptad repeat 2 (HR2) domain, was able to induce neutralizing polyclonal antibodies (C. T. Keng, A. Zhang, S. Shen, K. M. Lip, B. C. Fielding, T. H. Tan, C. F. Chou, C. B. Loh, S. Wang, J. Fu, X. Yang, S. G. Lim, W. Hong, and Y. J. Tan, J. Virol. 79:3289-3296, 2005). In this study, monoclonal antibodies (MAbs) were raised against this fragment to identify the linear neutralizing epitopes in the functional domain and to investigate the mechanisms involved in neutralization. Eighteen hybridomas secreting the S protein-specific MAbs were obtained. Binding sites of these MAbs were mapped to four linear epitopes. Two of them were located within the HR2 region and two immediately upstream of the HR2 domain. MAbs targeting these epitopes showed in vitro neutralizing activities and were able to inhibit cell-cell membrane fusion. These results provide evidence of novel neutralizing epitopes that are located in the HR2 domain and the spacer region immediately upstream of the HR2 of the S protein.


Assuntos
Anticorpos Antivirais/imunologia , Glicoproteínas de Membrana/imunologia , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Epitopos/imunologia , Humanos , Fusão de Membrana/imunologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Terciária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
7.
J Virol ; 79(15): 10083-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16014971

RESUMO

Here we analyzed the gene expression profile of cells that stably express the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein to determine its effects on host functions. A lung epithelial cell-line, A549, was chosen for this study because the lung is the primary organ infected by SARS-CoV and fatalities resulted mainly from pulmonary complications. Our results showed that the expression of 3a up-regulates the mRNA levels of all three subunits, Aalpha, Bbeta, and gamma, of fibrinogen. Consequently, the intracellular levels as well as the secretion of fibrinogen were increased. We also observed increased fibrinogen levels in SARS-CoV-infected Vero E6 cells.


Assuntos
Fibrinogênio/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Proteínas Virais/metabolismo , Animais , Western Blotting , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibrinogênio/genética , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Regulação para Cima , Células Vero , Proteínas do Envelope Viral , Proteínas Viroporinas
8.
Virol J ; 2: 51, 2005 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-15963240

RESUMO

A series of frameshift mutations within the 3a gene has been observed in culture-derived severe acute respiratory syndrome coronavirus (SARS-CoV). We report here that viral RNA from clinical samples obtained from SARS-CoV infected patients also contains a heterogeneous population of wild-type and mutant 3a transcripts.


Assuntos
Mutação da Fase de Leitura , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Proteínas Virais/genética , Humanos , RNA Viral/genética , Proteínas do Envelope Viral , Proteínas Viroporinas
9.
J Biol Chem ; 280(16): 15659-65, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15731104

RESUMO

The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of nucleus-encoded tRNAs. Thus, except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The only tRNA(Met) present in T. brucei mitochondria is therefore the one which, in the cytosol, is involved in translation elongation. Mitochondrial translation initiation depends on an initiator tRNA(Met) carrying a formylated methionine. This tRNA is then recognized by initiation factor 2, which brings it to the ribosome. To guarantee mitochondrial translation initiation, T. brucei has an unusual methionyl-tRNA formyltransferase that formylates elongator tRNA(Met). In the present study, we have identified initiation factor 2 of T. brucei and shown that its carboxyl-terminal domain specifically binds formylated trypanosomal elongator tRNA(Met). Furthermore, the protein also recognizes the structurally very different Escherichia coli initiator tRNA(Met), suggesting that the main determinant recognized is the formylated methionine. In vivo studies using stable RNA interference cell lines showed that knock-down of initiation factor 2, depending on which construct was used, causes slow growth or even growth arrest. Moreover, concomitantly with ablation of the protein, a loss of oxidative phosphorylation was observed. Finally, although ablation of the methionyl-tRNA formyltransferase on its own did not impair growth, a complete growth arrest was observed when it was combined with the initiation factor 2 RNA interference cell line showing the slow growth phenotype. Thus, these experiments illustrate the importance of mitochondrial translation initiation for growth of procyclic T. brucei.


Assuntos
Mitocôndrias/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores de Tempo
10.
J Virol ; 79(6): 3289-96, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15731223

RESUMO

The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SDelta10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


Assuntos
Mapeamento de Epitopos , Glicoproteínas de Membrana/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/imunologia , Western Blotting , Células Cultivadas , Chlorocebus aethiops , Clonagem Molecular , Epitopos/genética , Epitopos/imunologia , Escherichia coli/genética , Imunofluorescência , Imunoprecipitação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Testes de Neutralização , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia
11.
J Virol Methods ; 123(1): 41-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15582697

RESUMO

Severe acute respiratory syndrome (SARS), a life-threatening disease, is caused by the newly identified virus SARS coronavirus (SARS-CoV). In order to study the spike (S) protein of this highly contagious virus, we established a clonal cell-line, CHO-SG, from the Chinese hamster ovary cells that stably expresses C-terminally EGFP-tagged SARS-CoV S protein (S-EGFP). The ectodomain of the S glycoprotein is localized on the surface of CHO-SG cells with N-acetyl-glucosamine-terminated carbohydrate structure. CHO-SG cells associated tightly with Vero E6 cells, a SARS-CoV receptor (ACE2) expressing cell-line, and the interaction remained stable under highly stringent condition (1M NaCl). This interaction could be blocked by either the serum from a SARS convalescent patient or a goat anti-ACE2 antibody, indicating that the interaction is specific. A binding epitope with lesser degree of glycosylation and native conformation was localized by using rabbit anti-sera raised against five denatured recombinant S protein fragments expressed in Escherichia coli. One of the sera obtained from the fragment encompassing amino acids 48-358 significantly blocked the interaction between CHO-SG and Vero E6 cells. The region is useful for studying neutralizing antibodies in future vaccine development. This paper describes an easy and safe cell-based assay suitable for studying the binding between SARS-CoV S protein and its receptor.


Assuntos
Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Células CHO , Chlorocebus aethiops , Cricetinae , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteína da Espícula de Coronavírus , Células Vero , Proteínas do Envelope Viral/genética
12.
J Virol ; 78(24): 14043-7, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15564512

RESUMO

Besides genes that are homologous to proteins found in other coronaviruses, the severe acute respiratory syndrome coronavirus genome also contains nine other potential open reading frames. Previously, we have characterized the expression and cellular localization of two of these "accessory" viral proteins, 3a (previously termed U274) and 7a (previously termed U122). In this study, we further examined whether they can induce apoptosis, which has been observed clinically. We showed that the overexpression of 7a, but not of 3a or the viral structural proteins, nucleocapsid, membrane, and envelope, induces apoptosis. 7a induces apoptosis via a caspase-dependent pathway and in cell lines derived from different organs, including lung, kidney, and liver.


Assuntos
Apoptose , Caspases/metabolismo , Proteínas de Membrana/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas Virais/metabolismo , Animais , Células COS , Caspase 3 , Linhagem Celular , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas de Membrana/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Células Vero , Proteínas da Matriz Viral , Proteínas Virais/genética
13.
J Virol ; 78(13): 6723-34, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15194747

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV) genome contains open reading frames (ORFs) that encode for several genes that are homologous to proteins found in all known coronaviruses. These are the replicase gene 1a/1b and the four structural proteins, nucleocapsid (N), spike (S), membrane (M), and envelope (E), and these proteins are expected to be essential for the replication of the virus. In addition, this genome also contains nine other potential ORFs varying in length from 39 to 274 amino acids. The largest among these is the first ORF of the second longest subgenomic RNA, and this protein (termed U274 in the present study) consists of 274 amino acids and contains three putative transmembrane domains. Using antibody specific for the C terminus of U274, we show U274 to be expressed in SARS-CoV-infected Vero E6 cells and, in addition to the full-length protein, two other processed forms were also detected. By indirect immunofluorescence, U274 was localized to the perinuclear region, as well as to the plasma membrane, in both transfected and infected cells. Using an N terminus myc-tagged U274, the topology of U274 and its expression on the cell surface were confirmed. Deletion of a cytoplasmic domain of U274, which contains Yxxphi and diacidic motifs, abolished its transport to the cell surface. In addition, U274 expressed on the cell surface can internalize antibodies from the culture medium into the cells. Coimmunoprecipitation experiments also showed that U274 could interact specifically with the M, E, and S structural proteins, as well as with U122, another protein that is unique to SARS-CoV.


Assuntos
Transporte Biológico , Endocitose , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Coelhos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Transfecção , Células Vero , Proteínas Virais/química , Proteínas Virais/genética
14.
J Virol ; 78(14): 7311-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15220404

RESUMO

A novel coronavirus (CoV) has been identified as the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV genome encodes the characteristic essential CoV replication and structural proteins. Additionally, the genome contains six group-specific open reading frames (ORFs) larger than 50 amino acids, with no known homologues. As with the group-specific genes of the other CoVs, little is known about the SARS-CoV group-specific genes. SARS-CoV ORF7a encodes a putative unique 122-amino-acid protein, designated U122 in this study. The deduced sequence contains a probable cleaved signal sequence and a C-terminal transmembrane helix, indicating that U122 is likely to be a type I membrane protein. The C-terminal tail also contains a typical endoplasmic reticulum (ER) retrieval motif, KRKTE. U122 was expressed in SARS-CoV-infected Vero E6 cells, as it could be detected by Western blot and immunofluorescence analyses. U122 is localized to the perinuclear region of both SARS-CoV-infected and transfected cells and colocalized with ER and intermediate compartment markers. Mutational analyses showed that both the signal peptide sequence and ER retrieval motif were functional.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Sinais Direcionadores de Proteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Especificidade da Espécie , Transfecção , Células Vero , Proteínas da Matriz Viral , Proteínas Virais/química
15.
Mol Cell Biol ; 22(11): 3707-17, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11997507

RESUMO

The mitochondrial genome of Trypanosoma brucei does not encode tRNAs. Consequently, all mitochondrial tRNAs are imported from the cytosol and originate from nucleus-encoded genes. Analysis of all currently available T. brucei sequences revealed that its genome carries 50 tRNA genes representing 40 different isoacceptors. The identified set is expected to be nearly complete since all but four codons are accounted for. The number of tRNA genes in T. brucei is very low for a eukaryote and lower than those of many prokaryotes. Using quantitative Northern analysis we have determined the absolute abundance in the cell and the mitochondrion of a group of 15 tRNAs specific for 12 amino acids. Except for the initiator type tRNA(Met), which is cytosol specific, the cytosolic and the mitochondrial sets of tRNAs were qualitatively identical. However, the extent of mitochondrial localization was variable for the different tRNAs, ranging from 1 to 7.5% per cell. Finally, by using transgenic cell lines in combination with quantitative Northern analysis it was shown that import of tRNA(Leu)(CAA) is independent of its 5'-genomic context, suggesting that the in vivo import substrate corresponds to the mature, fully processed tRNA.


Assuntos
RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Animais , Anticódon/genética , Sequência de Bases , Núcleo Celular/metabolismo , Códon/genética , Citosol/metabolismo , Expressão Gênica , Genoma de Protozoário , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Protozoário/química , RNA de Transferência/química , Transfecção
16.
Proc Natl Acad Sci U S A ; 99(3): 1152-7, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11792845

RESUMO

The mitochondrion of Trypanosoma brucei lacks tRNA genes. Its translation system therefore depends on the import of cytosolic, nucleus-encoded tRNAs. Thus, most trypanosomal tRNAs function in both the cytosol and the mitochondrion, and all are of the eukaryotic type. This is also the case for the elongator tRNA(Met), whereas the only other trypanosomal tRNA(Met), the eukaryotic initiator, is found exclusively in the cytosol. Unlike their cytosolic counterparts, organellar initiator tRNAs(Met) carry a formylated methionine. This raises the question of how initiation of translation works in trypanosomal mitochondria, where only elongator tRNA(Met) is found. Using in organello charging and formylation assays, we show that unexpectedly a fraction of elongator tRNA(Met) becomes formylated after import into mitochondria. Furthermore, in vitro experiments with mitochondrial extracts demonstrate that only the trypanosomal elongator and not the initiator tRNA(Met) is recognized by the formylation activity. Finally, RNA interference assays identify the gene encoding the trypanosomal formylase activity. Whereas the predicted protein is homologous to prokaryotic and mitochondrial methionyl-tRNA(Met) formyltransferases, it has about twice the mass of any of these proteins.


Assuntos
Mitocôndrias/metabolismo , RNA de Transferência de Metionina/genética , Trypanosoma brucei brucei/genética , Animais , Bactérias/genética , Transporte Biológico , Citosol/metabolismo , Mitocôndrias/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Protozoário/genética , RNA de Transferência de Metionina/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...