Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 174: 108364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599067

RESUMO

Eye movement analysis is critical to studying human brain phenomena such as perception, cognition, and behavior. However, under uncontrolled real-world settings, the recorded gaze coordinates (commonly used to track eye movements) are typically noisy and make it difficult to track change in the state of each phenomenon precisely, primarily because the expected change is usually a slower transient process. This paper proposes an approach, Improved Naive Segmented linear regression (INSLR), which approximates the gaze coordinates with a piecewise linear function (PLF) referred to as a hypothesis. INSLR improves the existing NSLR approach by employing a hypotheses clustering algorithm, which redefines the final hypothesis estimation in two steps: (1) At each time-stamp, measure the likelihood of each hypothesis in the candidate list of hypotheses by using the least square fit score and its distance from the k-means of the hypotheses in the list. (2) Filter hypothesis based on a pre-defined threshold. We demonstrate the significance of the INSLR method in addressing the challenges of uncontrolled real-world settings such as gaze denoising and minimizing gaze prediction errors from cost-effective devices like webcams. Experiment results show INSLR consistently outperforms the baseline NSLR in denoising noisy signals from three eye movement datasets and minimizes the error in gaze prediction from a low precision device for 71.1% samples. Furthermore, this improvement in denoising quality is further validated by the improved accuracy of the oculomotor event classifier called NSLR-HMM and enhanced sensitivity in detecting variations in attention induced by distractor during online lecture.


Assuntos
Movimentos Oculares , Humanos , Movimentos Oculares/fisiologia , Modelos Lineares , Algoritmos , Tecnologia de Rastreamento Ocular
2.
Antioxidants (Basel) ; 11(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139842

RESUMO

Orange peel waste (OPW) is known to contain an abundant amount of polyphenols compounds such as flavonoids, well-reported for their antioxidant and anti-inflammatory properties. While OPW is generally regarded as a food waste, the opportunity to extract bioactive compounds from these "wastes" arises due to their abundance, allowing the investigation of their potential effects on endothelial cells. Hence, this study aims to use a green extraction method and pressurized hot water extraction (PHWE) to extract bioactive compounds from OPW. Liquid chromatography with UV detection (LC/UV) and liquid chromatography mass spectrometry (LC/MS) were subsequently used to identify the bioactive compounds present. Through the optimization of the extraction temperature for PHWE, our results demonstrated that extraction temperatures of 60 °C and 80 °C yield distinct bioactive compounds and resulted in better antioxidant capacity compared to other extraction temperatures or organic solvent extraction. Despite having similar antioxidant capacity, their effects on endothelial cells were distinct. Specifically, treatment of endothelial cells with 60 °C OPW extracts inhibited TNFα-induced vascular inflammation and endothelial dysfunction in vitro, suggesting that OPW possess vasoprotective effects likely mediated by anti-inflammatory effects.

3.
Int J Bioprint ; 7(4): 393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805589

RESUMO

Three-dimensional food printing offers the possibility of modifying the structural design, nutrition, and texture of food, which may be used for consumers with special dietary requirements such as dysphagic patients. One of the food matrices that can be used for liquid delivery to dysphagic patients is food foams. Foams are widely used in different food products to adjust food density, rheological properties, and texture. Foams allow the food to stay in the mouth for sufficient time to provide hydration while minimizing the danger of choking. Our work studies the foam properties and printability of both egg white foams and eggless foams with a strong focus on their foaming properties, rheological properties, printability, and suitability for dysphagic patients. Food hydrocolloid, xanthan gum (XG), is added to improve foam stability and rheological properties so that the inks are printable. Rheological and syneresis properties of the pre-printed foam inks are examined. The texture profile and microstructure properties are studied post-printing. International dysphagia diet standardization initiative tests are carried out to assess the inks' potential for dysphagic diets. Inks with XG performed better with minimal water seepage, better foam stability, and excellent printability. This suggests that hydrocolloids lead to more stable food foams that are suitable for 3DFP and safe for hydration delivery to dysphagic patients.

4.
IEEE Int Conf Rehabil Robot ; 2019: 1115-1120, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374779

RESUMO

Pathological tremor is caused by a variety of neurological diseases. Although it is not life-threatening, it brings great inconvenience to patients. Traditional treatments including medication, rehabilitation programs and deep brain stimulation (DBS) have shown limited effectiveness along with risks and side effects. In order to overcome the limitations of these treatments, a new method, wearable exoskeleton technology, is introduced that aims to provide a new solution for tremor management. Based on this method, a wrist tremor suppression exoskeleton (WTSE) is developed in this research. A magnetorheological (MR) fluid damper is designed for controllable damping force and an embedded acquisition platform is used to acquire real-time tremor information. The total weight of the WTSE is 262.13 g and the maximum sustained damping force reaches 8 N. The prototype is wearable and the damping force is real-time adjustable. According to preliminary results, the signal acquisition system can obtain reliable data and the WTSE can reduce the amplitude of acceleration and angular velocity of simulated tremor by 60.39% and 55.07%, respectively.


Assuntos
Exoesqueleto Energizado , Tremor/terapia , Dispositivos Eletrônicos Vestíveis , Articulação do Punho/fisiologia , Algoritmos , Desenho de Equipamento , Humanos , Modelos Teóricos
5.
Ann Biomed Eng ; 43(12): 2941-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26108204

RESUMO

Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.


Assuntos
Intubação Gastrointestinal/instrumentação , Sistemas Computacionais , Desenho de Equipamento , Humanos , Intubação Gastrointestinal/métodos , Fenômenos Magnéticos , Reprodutibilidade dos Testes , Robótica
6.
Int J Rob Res ; 33(4): 616-630, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25313266

RESUMO

Magnetic Resonance Imaging (MRI) provides superior soft-tissue contrast in cancer diagnosis compared to other imaging modalities. However, the strong magnetic field inside the MRI bore along with limited scanner bore size poses significant challenges. Since current approaches in breast biopsy using MR images is primarily a blind targeting approach, it is necessary to develop a MRI-compatible robot that can avoid multiple needle insertions into the breast tissue. This MRI-compatible robotic system could potentially lead to improvement in the targeting accuracy and reduce sampling errors. A master-slave surgical system has been developed comprising of a MRI-compatible slave robot which consists of one piezo motor and five pneumatic cylinders connected by long pneumatic transmission lines. The slave robot follows the configuration of the master robot, which provides an intuitive manipulation interface for the physician and operates inside the MRI bore to adjust the needle position and orientation and perform needle insertion task. Based on the MRI experiments using the slave robot, there was no significant distortion in the images and hence the slave robot can be safely operated inside the MRI with minimal loss in signal-to-noise ratio (SNR). Ex vivo and in vivo experiments have been conducted to evaluate the performance of the master-slave surgical system.

7.
Sens Actuators A Phys ; 173(1): 254-266, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22423177

RESUMO

An optical-based motion sensing system has been developed for real-time sensing of instrument motion in micromanipulation. The main components of the system consist of a pair of position sensitive detectors (PSD), lenses, an infrared (IR) diode that illuminates the workspace of the system, a non-reflective intraocular shaft, and a white reflective ball attached at the end of the shaft. The system calculates 3D displacement of the ball inside the workspace using the centroid position of the IR rays that are reflected from the ball and strike the PSDs. In order to eliminate inherent nonlinearity of the system, calibration using a feedforward neural network is proposed and presented. Handling of different ambient light and environment light conditions not to affect the system accuracy is described. Analyses of the whole optical system and effect of instrument orientation on the system accuracy are presented. Sensing resolution, dynamic accuracies at a few different frequencies, and static accuracies at a few different orientations of the instrument are reported. The system and the analyses are useful in assessing performance of hand-held microsurgical instruments and operator performance in micromanipulation tasks.

8.
IEEE ASME Trans Mechatron ; 16(6): 1040-1048, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22058649

RESUMO

This paper presents the design and control of an MRI-compatible 1-DOF needle driver robot and its precise position control using pneumatic actuation with long transmission lines. MRI provides superior image quality compared to other imaging modalities such as CT or ultrasound, but imposes severe limitations on the material and actuator choice (to prevent image distortion) due to its strong magnetic field. We are primarily interested in developing a pneumatically actuated breast biopsy robot with a large force bandwidth and precise targeting capability during radio-frequency ablation (RFA) of breast tumor, and exploring the possibility of using long pneumatic transmission lines from outside the MRI room to the device in the magnet to prevent any image distortion whatsoever. This paper presents a model of the entire pneumatic system. The pneumatic lines are approximated by a first order system with time delay, because its dynamics are governed by the telegraph equation with varying coefficients and boundary conditions, which cannot be solved precisely. The slow response of long pneumatic lines and valve subsystems make position control challenging. This is further compounded by the presence of non-uniform friction in the device. Sliding mode control (SMC) was adopted, where friction was treated as an uncertainty term to drive the system onto the sliding surface. Three different controllers were designed, developed, and evaluated to achieve precise position control of the RFA probe. Experimental results revealed that all SMCs gave satisfactory performance with long transmission lines. We also performed several experiments with a 3-DOF fiber-optic force sensor attached to the needle driver to evaluate the performance of the device in the MRI under continuous imaging.

9.
IEEE Trans Robot ; 27(1): 65-74, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21666783

RESUMO

Magnetic resonance imaging (MRI) has been gaining popularity over standard imaging modalities like ultrasound and CT because of its ability to provide excellent soft-tissue contrast. However, due to the working principle of MRI, a number of conventional force sensors are not compatible. One popular solution is to develop a fiber-optic force sensor. However, the measurements along the principal axes of a number of these force sensors are highly cross-coupled. One of the objectives of this paper is to minimize this coupling effect. In addition, this paper describes the design of elastic frame structures that are obtained systematically using topology optimization techniques for maximizing sensor resolution and sensor bandwidth. Through the topology optimization approach, we ensure that the frames are linked from the input to output. The elastic frame structures are then fabricated using polymers materials, such as ABS and Delrin(®), as they are ideal materials for use in MRI environment. However, the hysteresis effect seen in the displacement-load graph of plastic materials is known to affect the accuracy. Hence, this paper also proposes modeling and addressing this hysteretic effect using Prandtl-Ishlinskii play operators. Finally, experiments are conducted to evaluate the sensor's performance, as well as its compatibility in MRI under continuous imaging.

10.
IEEE ASME Trans Mechatron ; 14(5): 598-605, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19936032

RESUMO

Piezoelectric, magnetostrictive, and shape memory alloy actuators are gaining importance in high-frequency precision applications constrained by space. Their intrinsic hysteretic behavior makes control difficult. The Prandtl-Ishlinskii (PI) operator can model hysteresis well, albeit a major inadequacy: the inverse operator does not exist when the hysteretic curve gradient is not positive definite, i.e., ill condition occurs when slope is negative. An inevitable tradeoff between modeling accuracy and inversion stability exists. The hysteretic modeling improves with increasing number of play operators. But as the piecewise continuous interval of each operator reduces, the model tends to be ill-conditioned, especially at the turning points. Similar ill-conditioned situation arises when these actuators move heavy loads or operate at high frequency. This paper proposes an extended PI operator to map hysteresis to a domain where inversion is well behaved. The inverse weights are then evaluated to determine the inverse hysteresis model for the feedforward controller. For illustration purpose, a piezoelectric actuator is used.

11.
IEEE Sens J ; 8(8): 1385-1388, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924267

RESUMO

Inertial sensors, like accelerometers and gyroscopes, are rarely used by themselves to measure displacement. Accuracy of inertial sensors is greatly handicapped by the notorious integration drift, which arises due to numerical integration of the sensors zero bias error. A solution is proposed in this paper to provide drift free estimation of displacement from inertial sensors.

12.
Sens Actuators A Phys ; 150(1): 116-123, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20161217

RESUMO

With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.

13.
IEEE Sens J ; 9(12): 1864-1871, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20209026

RESUMO

Active physiological tremor compensation instruments have been under research and development recently. The sensing unit of the instruments provides information on three degrees-of-freedom (DOF) motion of the instrument tip using accelerations provided by accelerometers placed inside the instruments. A complete vector of angular acceleration of the instrument needs to be known to obtain information on three DOF motions of the tip. Sensing resolution of angular acceleration about the instrument axis is directly proportional to the width of the proximal-end sensing unit. To keep the sensing resolution high enough, the width of the unit has to be made large. As a result, the proximal-end sensing unit of the instruments is bulky. In this paper, placement of accelerometers is proposed such that the angular acceleration about the instrument axis need not be known to obtain information on the three DOF motions of the tip. With the proposed placement, the instrument is no longer bulky and fewer number of accelerometers is required, thereby making the instrument compact and better in terms of ergonomics and reliability. Experiments were conducted to show that the proposed design of placement works properly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...