Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 4(2): 1001-1013, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860216

RESUMO

Drug induced cholestasis (DIC) is complexly associated with dysbiosis of the host-gut microbial cometabolism of bile acids (BAs). Murine animals are not suitable for transitional studies because the murine BA metabolism is quite different from human metabolism. In this work, the rifampicin (RFP) induced cholestasis was established in beagle dogs that have a humanlike BA profile to disclose how RFP affects the host-gut microbial cometabolism of BAs. The daily excretion of BA metabolites in urine and feces was extensively analyzed during cholestasis by quantitative BA profiling along the primary-secondary-tertiary axis. Oral midazolam clearance was also acquired to monitor the RFP-induced enterohepatic CYP3A activities because CYP3A is exclusively responsible for the tertiary oxidation of hydrophobic secondary BAs. RFP treatments caused a compensatory transition of the BA metabolism from the fecal disposition of secondary BAs to the urinary excretion of primary BAs in dogs, resulting in an infantile BA metabolism pattern recently disclosed in newborns. However, the tertiary BAs consistently constituted limitedly in the daily BA excretion, indicating that the detoxification role of the CYP3A catalyzed tertiary BA metabolism was not as strong as expected in this model. Multiple host-gut microbial factors might have contributed to the transition of the BA metabolism, such as inhibition of BA transporters, induction of liver-kidney interplaying detoxification mechanisms, and elimination of gut bacteria responsible for secondary BA production. Transitional studies involving more cholestatic drugs in preclinical animals with a humanlike BA profile and DIC patients may pave the way for understanding the complex mechanism of DIC in the era of metagenomics.

2.
Drug Metab Dispos ; 49(5): 369-378, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674269

RESUMO

Deoxycholic acid (DCA, 3α, 12α-dihydroxy-5ß-cholan-24-oic acid) is the major circulating secondary bile acid, which is synthesized by gut flora in the lower gut and selectively oxidized by CYP3A into tertiary metabolites, including 1ß,3α,12α-trihydroxy-5ß-cholan-24-oic acid (DCA-1ß-ol) and 3α,5ß,12α-trihydroxy-5ß-cholan-24-oic acid (DCA-5ß-ol) in humans. Since DCA has the similar exogenous nature and disposition mechanisms as xenobiotics, this work aimed to investigate whether the tertiary oxidations of DCA are predictive of in vivo CYP3A activities in beagle dogs. In vitro metabolism of midazolam (MDZ) and DCA in recombinant canine CYP1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 enzymes clarified that CYP3A12 was primarily responsible for either the oxidation elimination of MDZ or the regioselective oxidation metabolism of DCA into DCA-1ß-ol and DCA-5ß-ol in dog liver microsomes. Six male dogs completed the CYP3A intervention studies including phases of baseline, inhibition (ketoconazole treatments), recovery, and induction (rifampicin treatments). The oral MDZ clearance after a single dose was determined on the last day of the baseline, inhibition, and induction phases, and subjected to correlation analysis with the tertiary oxidation ratios of DCA detected in serum and urine samples. The results confirmed that the predosing serum ratios of DCA oxidation, DCA-5ß-ol/DCA, and DCA-1ß-ol/DCA were significantly and positively correlated both intraindividually and interindividually with oral MDZ clearance. It was therefore concluded that the tertiary oxidation of DCA is predictive of CYP3A activity in beagle dogs. Clinical transitional studies following the preclinical evidence are promising to provide novel biomarkers of the enterohepatic CYP3A activities. SIGNIFICANCE STATEMENT: Drug development, clinical pharmacology, and therapeutics are under insistent demands of endogenous CYP3A biomarkers that avoid unnecessary drug exposure and invasive sampling. This work has provided the first proof-of-concept preclinical evidence that the CYP3A catalyzed tertiary oxidation of deoxycholate, the major circulating secondary bile acid synthesized in the lower gut by bacteria, may be developed as novel in vivo biomarkers of the enterohepatic CYP3A activities.


Assuntos
Inibidores do Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ácido Desoxicólico/metabolismo , Microssomos Hepáticos/metabolismo , Adulto , Animais , Inibidores do Citocromo P-450 CYP3A/farmacologia , Cães , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Previsões , Moduladores GABAérgicos/metabolismo , Moduladores GABAérgicos/farmacologia , Humanos , Cetoconazol/metabolismo , Cetoconazol/farmacologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Midazolam/metabolismo , Midazolam/farmacologia , Oxirredução/efeitos dos fármacos
3.
Drug Metab Dispos ; 48(8): 662-672, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499339

RESUMO

This work aims to investigate how the bile acid metabolism of newborns differs from that of adults along the axis of primary, secondary, and tertiary bile acids (BAs). The total unconjugated BA profiles were quantitatively determined by enzyme digestion techniques in urine of 21 newborns born by cesarean section, 29 healthy parturient women, 30 healthy males, and 28 healthy nonpregnant females. As expected, because of a lack of developed gut microbiota, newborns exhibited poor metabolism of secondary BAs. Accordingly, the tertiary BAs contributed limitedly to the urinary excretion of BAs in newborns despite their tertiary-to-secondary ratios significantly increasing. As a result, the primary BAs of newborns underwent extensive oxidative metabolism, resulting in elevated urinary levels of some fetal-specific BAs, including 3-dehydroCA, 3ß,7α,12α-trihydroxy-5ß-cholan-24-oic acid, 3α,12-oxo-hydroxy-5ß-cholan-24-oic acid, and nine tetrahydroxy-cholan-24-oic acids (Tetra-BAs). Parturient women had significantly elevated urinary levels of tertiary BAs and fetal-specific BAs compared with female control, indicating that they may be excreted into amniotic fluid for maternal disposition. An in vitro metabolism assay in infant liver microsomes showed that four Tetra-BAs and 3-dehydroCA were hydroxylated metabolites of cholate, glycocholate, and particularly taurocholate. However, the recombinant cytochrome P450 enzyme assay found that the fetal-specific CYP3A7 did not contribute to these oxidation metabolisms as much as expected compared with CYP3A4. In conclusion, newborns show a BA metabolism pattern predominated by primary BA oxidations due to immaturity of secondary BA metabolism. Translational studies following this finding may bring new ideas and strategies for both pediatric pharmacology and diagnosis and treatment of perinatal cholestasis-associated diseases. SIGNIFICANCE STATEMENT: The prenatal BA disposition is different from adults because of a lack of gut microbiota. However, how the BA metabolism of newborns differs from that of adults along the axis of primary, secondary, and tertiary BAs remains poorly defined. This work demonstrated that the urinary BA profiles of newborns born by cesarean section are characterized by oxidative metabolism of primary BAs, in which the fetal-specific CYP3A7 plays a limited role in the downstream oxidation metabolism of cholate.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colatos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Recém-Nascido/metabolismo , Adulto , Fatores Etários , Ácidos e Sais Biliares/urina , Cesárea , Colatos/urina , Feminino , Voluntários Saudáveis , Humanos , Masculino , Troca Materno-Fetal , Microssomos Hepáticos , Oxirredução , Gravidez
4.
Drug Metab Dispos ; 48(6): 499-507, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193215

RESUMO

It was recently disclosed that CYP3A is responsible for the tertiary stereoselective oxidations of deoxycholic acid (DCA), which becomes a continuum mechanism of the host-gut microbial cometabolism of bile acids (BAs) in humans. This work aims to investigate the species differences of BA redox metabolism and clarify whether the tertiary metabolism of DCA is a conserved pathway in preclinical animals. With quantitative determination of the total unconjugated BAs in urine and fecal samples of humans, dogs, rats, and mice, it was confirmed that the tertiary oxidized metabolites of DCA were found in all tested animals, whereas DCA and its oxidized metabolites disappeared in germ-free mice. The in vitro metabolism data of DCA and the other unconjugated BAs in liver microsomes of humans, monkeys, dogs, rats, and mice showed consistencies with the BA-profiling data, confirming that the tertiary oxidation of DCA is a conserved pathway. In liver microsomes of all tested animals, however, the oxidation activities toward DCA were far below the murine-specific 6ß-oxidation activities toward chenodeoxycholic acid (CDCA), ursodeoxycholic acid, and lithocholic acid (LCA), and 7-oxidation activities toward murideoxycholic acid and hyodeoxycholic acid came from the 6-hydroxylation of LCA. These findings provided further explanations for why murine animals have significantly enhanced downstream metabolism of CDCA compared with humans. In conclusion, the species differences of BA redox metabolism disclosed in this work will be useful for the interspecies extrapolation of BA biology and toxicology in translational researches. SIGNIFICANCE STATEMENT: It is important to understand the species differences of bile acid metabolism when deciphering biological and hepatotoxicology findings from preclinical studies. However, the species differences of tertiary bile acids are poorly understood compared with primary and secondary bile acids. This work confirms that the tertiary oxidation of deoxycholic acid is conserved among preclinical animals and provides deeper understanding of how and why the downstream metabolism of chenodeoxycholic acid dominates that of cholic acid in murine animals compared with humans.


Assuntos
Ácidos e Sais Biliares/metabolismo , Citocromo P-450 CYP3A/metabolismo , Animais , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/química , Cães , Avaliação Pré-Clínica de Medicamentos , Fezes/química , Feminino , Vida Livre de Germes , Humanos , Hidroxilação , Masculino , Camundongos , Microssomos Hepáticos , Oxirredução , Ratos , Especificidade da Espécie , Estereoisomerismo , Especificidade por Substrato , Espectrometria de Massas em Tandem , Urina/química
5.
Drug Metab Dispos ; 47(6): 574-581, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30918015

RESUMO

The primary bile acids (BAs) synthesized from cholesterol in the liver are converted to secondary BAs by gut microbiota. It was recently disclosed that the major secondary BA, deoxycholate (DCA) species, is stereoselectively oxidized to tertiary BAs exclusively by CYP3A enzymes. This work subsequently investigated the in vitro oxidation kinetics of DCA at C-1ß, C-3ß, C-4ß, C-5ß, C-6α, C-6ß, and C-19 in recombinant CYP3A enzymes and naive enzymes in human liver microsomes (HLMs). The stereoselective oxidation of DCA fit well with Hill kinetics at 1-300 µM in both recombinant CYP3A enzymes and pooled HLMs. With no contributions or trace contributions from CYP3A5, CYP3A7 favors oxidation at C-19, C-4ß, C-6α, C-3ß, and C-1ß, whereas CYP3A4 favors the oxidation at C-5ß and C-6ß compared with each other. Correlation between DCA oxidation and testosterone 6ß-hydroxylation in 14 adult single-donor HLMs provided proof-of-concept evidence that DCA 19-hydroxylation is an in vitro marker reaction for CYP3A7 activity, whereas oxidation at other sites represents mixed indicators for CYP3A4 and CYP3A7 activities. Deactivation caused by DCA-induced cytochrome P450-cytochrome P420 conversion, as shown by the spectral titrations of isolated CYP3A proteins, was observed when DCA levels were near or higher than the critical micelle concentration (about 1500 µM). Unlike CYP3A4, CYP3A7 showed abnormally elevated activities at 500 and 750 µM, which might be associated with an altered affinity for DCA multimers. The disclosed kinetic and functional roles of CYP3A isoforms in disposing of the gut bacteria-derived DCA may help in understanding the structural and functional mechanisms of CYP3A.


Assuntos
Biomarcadores/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ácido Desoxicólico/metabolismo , Humanos , Hidroxilação/fisiologia , Cinética , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...