Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400285, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613131

RESUMO

Bismuth-telluride-based alloy has long been considered as the most promising candidate for low-grade waste heat power generation. However, optimizing the thermoelectric performance of n-type Bi2Te3 is more challenging than that of p-type counterparts due to its greater sensitivity to texture, and thus limits the advancement of thermoelectric modules. Herein, the thermoelectric performance of n-type Bi2Te3 is enhanced by incorporating a small amount of CuGaTe2, resulting in a peak ZT of 1.25 and a distinguished average ZT of 1.02 (300-500 K). The decomposed Cu+ strengthens interlayer interaction, while Ga+ optimizes carrier concentration within an appropriate range. Simultaneously, the emerged numerous defects, such as small-angle grain boundaries, twin boundaries, and dislocations, significantly suppresses the lattice thermal conductivity. Based on the size optimization by finite element modelling, the constructed thermoelectric module yields a high conversion efficiency of 6.9% and output power density of 0.31 W cm-2 under a temperature gradient of 200 K. Even more crucially, the efficiency and output power little loss after subjecting the module to 40 thermal cycles lasting for 6 days. This study demonstrates the efficient and reliable Bi2Te3-based thermoelectric modules for broad applications in low-grade heat harvest.

2.
Phys Chem Chem Phys ; 26(11): 8932-8937, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38433622

RESUMO

Traditional half-Heusler thermoelectric materials, identified as 18-electron compounds, are characterized by the high power factor and the high lattice thermal conductivity. Interestingly, the emerging 19-electron half-Heusler compounds were also found to be promising thermoelectric materials, but with a 5-10 times lower lattice thermal conductivity. Since the two kinds of compounds have similar chemical and physical structures, such as TiCoSb and VCoSb, the large difference in lattice thermal conductivity is a puzzling question. Here, we present a theoretical study to clarify the lattice thermal transport in half-Heusler thermoelectric materials. Based on electronic band structure analysis, we show that the two transition-metal elements in half-Heusler compounds form the strong and direct d-d interaction that is responsible for the high lattice thermal conductivity of 18-electron compounds. In 19-electron half-Heusler compounds, however, the extra valence electron enters the d-d antibonding states, which significantly weakens the atomic bond strength, leading to a large decrease in the cohesive energy. The resulting softened acoustic phonons enhance the phonon-phonon scattering, and thus reduce the lattice thermal conductivity significantly. By constructing an artificial 18-e compound V0.5Sc0.5CoSb, it is proved that the one less electron relative to VCoSb increases the lattice thermal conductivity significantly.

3.
Small ; 20(12): e2306701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948419

RESUMO

Bi2Te3-based alloys are the benchmark for commercial thermoelectric (TE) materials, the widespread demand for low-grade waste heat recovery and solid-state refrigeration makes it imperative to enhance the figure-of-merits. In this study, high-performance Bi0.5Sb1.5Te3 (BST) is realized by incorporating Cu2GeSe3 and Se. Concretely, the diffusion of Cu and Ge atoms optimizes the hole concentration and raises the density-of-states effective mass (md *), compensating for the loss of "donor-like effect" exacerbated by ball milling. The subsequent Se addition further increases md *, enabling a total 28% improvement of room-temperature power factor (S2σ), reaching 43.6 µW cm-1 K-2 compared to the matrix. Simultaneously, the lattice thermal conductivity is also significantly suppressed by multiscale scattering sources represented by Cu-rich nanoparticles and dislocation arrays. The synergistic effects yield a peak ZT of 1.41 at 350 K and an average ZT of 1.23 (300-500 K) in the Bi0.5Sb1.5Te2.94Se0.06 + 0.11 wt.% Cu2GeSe3 sample. More importantly, the integrated 17-pair TE module achieves a conversion efficiency of 6.4%, 80% higher than the commercial one at ΔT = 200 K. These results validate that the facile composition optimization of the BST/Cu2GeSe3/Se is a promising strategy to improve the application of BST-based TE modules.

4.
Small Methods ; 8(3): e2301256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009750

RESUMO

Power generation modules utilizing thermoelectric (TE) materials are suitable for recycling widespread low-grade waste heat (<600 K), highlighting the immediate necessity for advanced Bi2 Te3 -based alloys. Herein, the substantial enhancement in TE performance of the p-type Bi0.4 Sb1.6 Te3 (BST) sintered sample is realized by subtly incorporating the non-stoichiometric Ag5 Te3 and counteractive Se. Specifically, Ag atoms diffused into the BST lattice improve the density-of-states effective mass (md * ) and boost the hole concentration for the suppressed bipolar effect. The addition of Se further improves md * prompting the room-temperature power factor upgrade to 46 W cm-1  K-2 . Concurrently, the lattice thermal conductivity is considerably lowered by multiple scattering sources exemplified by Sb-rich nanoprecipitates and dense dislocations. These synergistic results yield a high peak ZT of 1.44 at 375 K and an average ZT of 1.28 between 300 and 500 K in the Bi0.4 Sb1.6 Te2.95 Se0.05 + 0.05 wt.% Ag5 Te3 sample. More significantly, when coupled with n-type zone-melted Bi2 Te2.7 Se0.3 , the integrated 17-pair TE module achieves a competitive conversion efficiency of 6.1% and an output power density of 0.40 W cm-2 at a temperature difference of 200 K, demonstrating great potential for practical applications.

5.
ACS Appl Mater Interfaces ; 16(1): 907-914, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146641

RESUMO

Entropy engineering is aneffective scheme to reduce the thermal conductivity of thermoelectric materials, but it inevitably deteriorates the carrier mobility. Here, we report the optimization of thermoelectric performance of PbTe by combining entropy engineering and nanoprecipitates. In the continuously tuned compounds of Pb0.98Na0.02Te(1-2x)SxSex, we show that the x = 0.05 sample exhibits an exceptionally low thermal conductivity relative to its configuration entropy. By introducing Mn doping, the produced temperature-dependent nanoprecipitates of MnSe cause the high-temperature thermal conductivity to be further reduced. A very low lattice thermal conductivity of 0.38 W m-1 K-1 is achieved at 825 K. Meanwhile, the carrier mobility of the samples is only slightly influenced, owing to the well-controlled configuration entropy and the size of nanoprecipitates. Finally, a high peak zT of ∼2.1 at 825 K is obtained in the Pb0.9Na0.04Mn0.06Te0.9S0.05Se0.05 alloy.

6.
ACS Appl Mater Interfaces ; 15(48): 56064-56071, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990531

RESUMO

Commercial Bi2Te3-based thermoelectric (TE) coolers typically comprise equal-size p- and n-type legs. However, this traditional structure limits the cooling temperature differences of TE coolers (TECs) due to identical current density, when their electrical or thermal characteristics differ significantly. This work presents a novel design of p- and n-type TE legs to optimize the performance of TECs. The cooling properties of the materials are initially calculated by theoretical equations and then evaluated by using a combination of finite element simulations and experiments. The research findings suggest that by utilizing higher ZT p-type materials to enhance the TEC cooling performance, further optimization of the ratio of the cross-sectional area of the TE legs (Ap/An) improves the structural matching of the legs, which achieves the maximum figure of merit Z and leads to a 5.4% increase in cooling power density. Additionally, the TEC with optimized Ap/An increases the cooling temperature difference by 3.3 and 2.7 K for the same current at hot side temperatures of 300 and 315 K, respectively, while the coefficient of performance remains unchanged. Moreover, the maximum cooling temperature difference reaches 70 and 74 K, respectively. We anticipate that our results will guide the design and optimization of the TECs.

7.
Adv Mater ; 35(21): e2300338, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36862991

RESUMO

As the sole dominator of the commercial thermoelectric (TE) market, Bi2 Te3 -based alloys play an irreplaceable role in Peltier cooling and low-grade waste heat recovery. Herein, to improve the relative low TE efficiency determined by the figure of merit ZT, an effective approach is reported for improving the TE performance of p-type (Bi,Sb)2 Te3 by incorporating Ag8 GeTe6 and Se. Specifically, the diffused Ag and Ge atoms into the matrix conduce to optimized carrier concentration and enlarge the density-of-states effective mass while the Sb-rich nanoprecipitates generate coherent interfaces with little loss of carrier mobility. The subsequent Se dopants introduce multiple phonon scattering sources and significantly suppress the lattice thermal conductivity while maintaining a decent power factor. Consequently, a high peak ZT of 1.53 at 350 K and a remarkable average ZT of 1.31 (300-500 K) are attained in the Bi0.4 Sb1.6 Te0.95 Se0.05  + 0.10 wt% Ag8 GeTe6 sample. Most noteworthily, the size and mass of the optimal sample are enlarged to Ø40 mm-200 g and the constructed 17-couple TE module exhibits an extraordinary conversion efficiency of 6.3% at ΔT = 245 K. This work demonstrates a facile method to develop high-performance and industrial-grade (Bi,Sb)2 Te3 -based alloys, which paves a strong way for further practical applications.

8.
ACS Appl Mater Interfaces ; 14(50): 55780-55786, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475592

RESUMO

Bismuth-telluride-based thermoelectric materials have been applied in active room-temperature cooling, but the mediocre ZT value of ∼1.0 limits the thermoelectric (TE) device's conversion efficiency and determines its application. In this work, we show the obviously improved thermoelectric properties of p-type Bi0.5Sb1.5Te3 by the Cu8GeSe6 composite. The addition of Cu8GeSe6 effectively boosts the carrier concentration and thus limits the bipolar thermal conductivity as the temperature is elevated. With the Cu8GeSe6 content of 0.08 wt %, the hole concentration reaches 5.0 × 1019 cm-3 and the corresponding carrier mobility is over 160 cm2 V-1 s-1, resulting in an optimized power factor of over 42 µW cm-1 K-2 at 300 K. Moreover, the Cu8GeSe6 composite introduces multiple phonon-scattering centers by increasing dislocations and element and strain field inhomogeneities, which reduce the thermal conductivity consisting of a lattice contribution and a bipolar contribution to 0.51 W m-1 K-1 at 350 K. As a consequence, the peak ZT of the Bi0.5Sb1.5Te3-0.08 wt % Cu8GeSe6 composite reaches 1.30 at 375 K and the average ZT between 300 and 500 K is improved to 1.13. A thermoelectric module comprised of this composite and commercial Bi2Te2.5Se0.5 exhibits a conversion efficiency of 5.3% with a temperature difference of 250 K, demonstrating the promising applications in low-grade energy recovery.

9.
ACS Appl Mater Interfaces ; 14(40): 45621-45627, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174115

RESUMO

GeTe is an emerging lead-free thermoelectric material, but its excessive carrier concentration and high thermal conductivity severely restrict the enhancement of thermoelectric properties. In this study, the synergistically optimized thermoelectric properties of p-type GeTe through Bi-Cu2S coalloying are reported. It can be found that the donor behavior of Bi and the substitution-interstitial defect pairs of Cu+ ions effectively reduce the hole concentration to an optimal level with carrier mobility less affected. At the same time, Bi-Cu2S coalloying induces many phonon scattering centers involving stacking faults, nanoprecipitations, grain boundaries and tetrahedral dislocations and suppresses the lattice thermal conductivity to 0.64 W m-1 K-1. Consequently, all effects synergistically yield a peak ZT of 1.9 at 770 K with a theoretical conversion efficiency of 14.5% (300-770 K) in the (Ge0.94Bi0.06Te)0.988(Cu2S)0.012 sample, which is very promising for mid-low temperature range waste heat harvest.

10.
ACS Appl Mater Interfaces ; 14(25): 29032-29038, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704789

RESUMO

In the mid-temperature region, SnTe is a promising substitute for PbTe, whereas the thermoelectric (TE) property of pristine SnTe is severely limited by the good thermal conductivity and inferior Seebeck coefficient. In this research, we synergistically manipulate the interdependent TE parameters of SnTe-AgBiTe2 alloys by Mn doping to increase the ZT value. The AgBiTe2 alloying is found to greatly reduce the electrical conductivity and electronic contribution for thermal transport by reducing the carrier mobility, while Mn doping obviously improves the Seebeck coefficient by effectively decreasing the valence band offset. The lowest κl of Mn-doped SnTe-AgBiTe2 alloys is 0.49 W m-1 K-1 at 823 K since the various defects strengthen the phonon scattering. Collectively, these manipulations yield a peak ZT value of 1.40 at 823 K and an average ZT value of 0.73 (300-823 K) in the Mn-doped SnTe-AgBiTe2 alloys. This research suggests that Mn doping is a valid scheme to constantly improve the thermoelectric property of SnTe-AgBiTe2 alloys in a wide temperature range.

11.
Small ; 18(23): e2201352, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429134

RESUMO

Bi2 Te3 -related alloys dominate the commercial thermoelectric market, but the layered crystal structure leads to the dissociation and intrinsic brittle fracture, especially for single crystals that may worsen the practical efficiency. In this work, point defect configuration by S/Te/I defects engineering is engaged to boost thermoelectric and mechanical properties of n-type Bi2 Te3 alloy, which, coupled with p-type BiSbTe, shows a competitive conversion efficiency for the fabricated module. First, as S alloying suppresses the intrinsic B i T e , antisite defects and forms a donor-like effect, electronic transport properties are optimized, associated with the decreased thermal conductivity due to the point defect scattering. The periodide compound TeI4 is afterward adopted to further tune carrier concentration for the realization of an optimal ZT. Finally, an advanced average ZT of 1.05 with ultra-high compressive strength of 230 MPa is achieved for Bi2 Te2.9 S0.1 (TeI4 )0.0012 . Based on this optimum composition, a fabricated 17-pair module demonstrates a maximum conversion efficiency of 5.37% under the temperature difference of 250 K, rivaling the current state-of-the-art Bi2 Te3 modules. This work reveals the novel mechanism of point defect reconfiguration in synergistic enhancement of thermoelectric and mechanical properties for durably commercial application, which may be applicable to other thermoelectric systems.

12.
ACS Appl Mater Interfaces ; 14(12): 14359-14366, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35297604

RESUMO

The GeTe compound has been revealed to be an outstanding thermoelectric compound, while its inherent high thermal conductivity restricts further improvement in its performance. Herein, we report a study on the synergistic optimization of the thermoelectric performance of GeTe by Bi-Se codoping. It is shown that the introduction of Bi decreases the carrier concentration and increases the structural parameter of the interaxial angle. With Se doping in the Te site, the lattice thermal conductivity is markedly reduced, while the carrier mobility is slightly influenced. Compared with the singly Se-doped GeTe, the Ge1-xBixTe1-ySey samples are more closed to a cubic phase, as indicated by the larger interaxial angle. On account of the reduction of carrier concentration and thermal conductivity, a ZTmax of 1.80 at 665 K and a high ZTave of 1.39 (400-800 K) are obtained in Ge0.94Bi0.06Te0.85Se0.15. This work reveals that the interaxial angle is vital to the performance optimization of rhombohedral GeTe.

13.
ACS Appl Mater Interfaces ; 13(48): 57514-57520, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817164

RESUMO

Zone-melted Bi2Te3-based alloys are the only commercially available thermoelectric (TE) materials, but they suffer from mediocre figure of merit (ZT) values and brittleness. In this work, we prepared Bi0.48Sb1.52Te3 sintered samples using a hot-pressing method and added tiny AgCuTe to improve the comprehensive properties. Because the carrier concentration is boosted by the AgCuTe addition, the bipolar effect at higher temperature is explicitly suppressed and the power factor is also improved in a broad temperature scope. Simultaneously, κlat is mostly diminished by the introduced phonon scattering centers comprising point defects, dislocations, and grain boundaries. Consequently, we achieved a ZTmax of 1.25 at 350 K and its average ZTave of 1.1 from 300 to 500 K in the (Bi0.48Sb1.52Te3 + 3 wt % Te) + 0.12 wt % AgCuTe sample. Composed of this sample and commercial Bi2Te2.5Se0.5, the fabricated TE module manifests a maximum power output density of 0.31 W cm-2 (Tcold = 300 K and Thot = 500 K). This work suggests that AgCuTe-doped Bi0.48Sb1.52Te3 is promising for recovering low-grade thermal energy near room temperature.

14.
Phys Chem Chem Phys ; 23(33): 17866-17872, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34378579

RESUMO

The emerging material GeMnTe2 provides a rare example to study the spin degree of freedom in thermoelectric transport, as it exhibits an anomalous Seebeck coefficient driven by the spin's thermodynamic entropy. This work presents an unconventional strategy to optimize the thermoelectric performance of GeMnTe2 by manipulating the spin degree of freedom. NaBiTe2 is alloyed into GeMnTe2 to disorder the spin orientation under finite temperature, and the obtained Seebeck coefficient is confirmed to be dramatically enhanced by more than 150%. The measurements of XRD and magnetic susceptibility indicate that the increased Seebeck coefficient is due to the increase of the spin's thermodynamic entropy. Finally, the maximum ZT of 1.06 at 820 K is obtained in Ge0.8Na0.1Bi0.1MnTe2. This work enriches the physical picture of spin degree of freedom in thermoelectric materials.

15.
ACS Appl Mater Interfaces ; 13(21): 24937-24944, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014653

RESUMO

Bismuth telluride alloys have dominated the industrial application of thermoelectric cooling, but the relatively poor mechanical performance of commercial zone-melting material seriously limits the device integration and stability. Here, we exhibit synergistically enhanced thermoelectric and mechanical performances of sintered Bi0.48Sb1.52Te3-AgSbSe2 composites. It is found that the increased hole concentration improves the S2σ to 40 µW cm-1 K-2 at room temperature, and the emerged various defects effectively suppress the κl to 0.57 W m-1 K-1 at 350 K. All effects harvest a highest ZT = 1.2 at 350 K along with an average ZT = 1.0 between 300-500 K in the x = 0.2 sample. Notably, AgSbSe2 addition not only optimizes the thermoelectric properties, but also enhances the mechanical performance with a Vickers hardness of 0.75 GPa. Furthermore, the isotropy of thermoelectric properties is also observably promoted by solid-phase reaction combined with high-energy ball milling and hot pressing. Our study reveals a viable strategy to improve the comprehensive performance of sintered bismuth telluride materials.

16.
Research (Wash D C) ; 2021: 1949070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796858

RESUMO

Na x CoO2 was known 20 years ago as a unique example in which spin entropy dominates the thermoelectric behavior. Hitherto, however, little has been learned about how to manipulate the spin degree of freedom in thermoelectrics. Here, we report the enhanced thermoelectric performance of GeMnTe2 by controlling the spin's thermodynamic entropy. The anomalously large thermopower of GeMnTe2 is demonstrated to originate from the disordering of spin orientation under finite temperature. Based on the careful analysis of Heisenberg model, it is indicated that the spin-system entropy can be tuned by modifying the hybridization between Te-p and Mn-d orbitals. As a consequent strategy, Se doping enlarges the thermopower effectively, while neither carrier concentration nor band gap is affected. The measurement of magnetic susceptibility provides a solid evidence for the inherent relationship between the spin's thermodynamic entropy and thermopower. By further introducing Bi doing, the maximum ZT in Ge0.94Bi0.06MnTe1.94Se0.06 reaches 1.4 at 840 K, which is 45% higher than the previous report of Bi-doped GeMnTe2. This work reveals the high thermoelectric performance of GeMnTe2 and also provides an insightful understanding of the spin degree of freedom in thermoelectrics.

17.
ACS Appl Mater Interfaces ; 13(13): 15429-15436, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755429

RESUMO

Bismuth telluride has been the only commercial thermoelectric candidate, but the n-type sintered material lags well behind the p-type one in the zT value, which severely limits the further development of thermoelectrics. Here, we report a promising technique named hot-stacked deformation to effectively improve the thermoelectric properties of n-type Bi2Te2.79Se0.21 + 0.067 wt % BiCl3 materials based on zone-melting ingots. It is found that a high grain alignment is maintained during the plastic deformation and the carrier concentration is properly optimized owing to the donor-like effect, leading to an enhanced power factor. Moreover, the lattice thermal conductivity is obviously suppressed due to the emerged phonon scattering centers of dense grain boundaries and dislocations. These effects synergistically yield a maximum zT value of 1.38 and an average zTave of 1.18 between 300 and 500 K in the hot-stacked deformed sample, which is approximately 42% higher than those of the zone-melting ingots.

18.
ACS Appl Mater Interfaces ; 12(47): 52922-52928, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170630

RESUMO

Constructing a nanocomposite to introduce a coherent interface is an effective way to improve the property of thermoelectric material. Here, a series composites of Bi0.48Sb1.52Te3-x wt % Sb2Te3 (x = 0, 0.3, 0.5, 0.8, and 1.0) were synthesized, where the hydrothermally prepared Sb2Te3 nanosheets were intimately wrapped in the solid-state-reacted Bi0.48Sb1.52Te3 matrix. The formation of a coherent interface was observed and confirmed by the scanning electron microscopy characterization. As the Sb2Te3 content was over 0.5 wt %, the carrier mobility could increase by 26%, while the carrier concentration decreased by 9% compared to those of the pure matrix at 300 K, enhancing the power factor to 40.1 µW/cm K2. Moreover, the Bi0.48Sb1.52Te3-0.5 wt % Sb2Te3 sample exhibited a reduced lattice thermal conductivity of 0.83 W/m K at room temperature, resulting from the strengthened phonon scattering by interfaces. Combined with the manipulations of both the electronic and thermal transport by constructing a coherent interface, a maximum ZT of 1.05 was obtained in the x = 0.5 composite at 300 K, and it was improved by 20% compared with the result of the Bi0.48Sb1.52Te3 matrix.

19.
ACS Appl Mater Interfaces ; 12(28): 31612-31618, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32543171

RESUMO

Phonon engineering is a core stratagem to improve the thermoelectric performance, and multi-scale defects are expected to scatter a broad range of phonons and compress the lattice thermal conductivity. Here, we demonstrate obviously enhanced thermoelectric properties in Bi0.48Sb1.52Te3 alloy by a hot-pressing texture method along the axial direction of a zone-melted ingot. It is found that a plastic deformation of grain refinement and rearrangement occurs during the textured pressing process. Although the obtained power factor is slightly decreased, a large amount of grain boundaries emerges in the textured samples and dense dislocations are observed around the boundaries and inside the grains. These additional phonon scattering centers can effectively scatter the low- and mid-frequency phonons, and the corresponding lattice thermal conductivity is significantly reduced to only 50% of that of zone-melted samples. Consequently, the maximum figure of merit (ZT) reaches 1.44 at 330 K and the average ZT (300-380 K) reaches 1.38. This study suggests that the simple hot-pressing texture technique is a promising method to significantly optimize the cooling capacity of Bi0.48Sb1.52Te3-based thermoelectric refrigeration.

20.
Small ; 16(13): e1906921, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32105400

RESUMO

GeTe alloy is a promising medium-temperature thermoelectric material but with highly intrinsic hole carrier concentration by thermodynamics, making this system to be intrinsically off-stoichiometric with Ge vacancies and Ge precipitations. Generally, an intentional increase of formation energy of Ge vacancy by element substitution will lead to an effective dissolution of Ge precipitates for reduction in hole concentration. Here, an opposite direction of decreasing the formation energy of Ge vacancies is demonstrated by substituting Cr at Ge site. This strategy produces more but nearly homogenously distributed Ge precipitations and Ge vacancies, which provides enhanced phonon scattering and effectively reduces the lattice thermal conductivity. Furthermore, Cr atom carries one more electron than Ge and serves as an electron donor for decreasing the hole carrier concentrations. Further optimization incorporates the effect of Bi substitution for facilitating band convergence. A maximum figure of merit (ZT) of 2.0 at 600 K with average ZT of over 1.2 is achieved in the sample of Ge0.92 Cr0.03 Bi0.05 Te, making it one of the best thermoelectric materials for medium-temperature application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...