Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Orthop ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39122798

RESUMO

PURPOSE: The step-cut osteotomy has been recognized as a valuable approach for addressing cubitus varus deformity, albeit one that necessitates technical proficiency. This study aims to evaluate the efficacy of the modified step-cut osteotomy technique in conjunction with patient-specific instruments by clinical and radiological assessment. METHODS: We conducted a retrospective review of patients who underwent modified step-cut osteotomy with the use of patient-specific instruments in conjunction with Kirschner wires fixation for the correction of cubitus varus deformity between April 2016 and April 2022. Follow-up was performed for a minimum of two years, during which pre-operative and post-operative clinical and radiological parameters were compared. RESULTS: Fifteen patients were enrolled in this study. The mean pre-operative humeral-elbow-wrist (HEW) of the affected side was -21.7° (ranging from -14° to -34°), while the normal side was 9.4° (ranging from 5° to 15°). The post-operation HEW of affected side was 9° (ranging from 4° to 16°). There was no significant difference between the normal side and affected side after operation (p = 0.74). Pre-operative range of motion in the affected side was 130°, while the post-operative range of motion was 132°. Fourteen patients (93.3%) were pleased with the overall appearance of their elbow. None lazy-S deformity was observed in these cases. There were no major complications. CONCLUSION: The modified step-cut osteotomy technique, utilizing patient-specific instrument in conjunction with Kirschner wires fixation was found to be a safe, reliable, and technically easy procedure for correcting cubitus varus deformity.

2.
Mol Med ; 30(1): 102, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009982

RESUMO

BACKGROUND: Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS: THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS: The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION: We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.


Assuntos
Ferroptose , Necroptose , Humanos , Acrilamidas , Apoptose , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a RNA , Sulfonamidas , Células THP-1
3.
Front Plant Sci ; 15: 1411625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938640

RESUMO

As an evergreen shrub, Euonymus japonicus plays a crucial role in urban landscape construction, and its growth is affected by severe foliar anthracnose caused by Colletotrichum spp. However, the biodiversity of Colletotrichum species associated with anthracnose on E. japonicus remains undetermined. This study involved a two-year collection of E. japonicus leaf samples with typical anthracnose symptoms from 9 districts in Beijing, China. A total of 194 Colletotrichum isolates were obtained, and eight Colletotrichum species were subsequently identified using morphological characteristics and molecular identification with the ACT, GADPH, CHS, TUB2, and CAL genes, as well as the rDNA-ITS region. These species included Colletotrichum aenigma, C. fructicola, C. gloeosporioides, C. grossum, C. hebeiense, C. karstii, C. siamense, and C. theobromicola with C. siamense being the most prevalent (57%), followed by C. aenigma and C. theobromicola. Furthermore, C. fructicola, C. grossum and C. hebeiense are reported for the first time as causal agents of anthracnose on E. japonicus worldwide, and C. karstii is newly reported to be associated with E. japonicus anthracnose in China. Pathogenicity tests revealed that all tested isolates exhibited pathogenicity in the presence of wounds, emphasizing the need to avoid artificial or mechanical wounds to prevent infection in E. japonicus management. The EC50 values of five fungicides, namely difenoconazole, flusilazole, tebuconazole, hexaconazole, and prochloraz, were found to be less than 10 mg/L, indicating their strong potential for application. Notably, the EC50 of prochloraz was less than 0.05 mg/L for C. theobromicola. These findings offer valuable insights for the management of anthracnose on E. japonicus.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38776048

RESUMO

Exosomes, nano-sized small extracellular vesicles, have been shown to serve as mediators between intercellular communications by transferring bioactive molecules, such as non-coding RNA, proteins, and lipids from secretory to recipient cells, modulating a variety of physiological and pathophysiological processes. Recent studies have gradually demonstrated that altered exosome charges may represent a key mechanism driving the pathological process of ferroptosis. This review summarizes the potential mechanisms and signal pathways relevant to ferroptosis and then discusses the roles of exosome in ferroptosis. As well as transporting iron, exosomes may also indirectly convey factors related to ferroptosis. Furthermore, ferroptosis may be transmitted to adjacent cells through exosomes, resulting in cascading effects. It is expected that further research on exosomes will be conducted to explore their potential in ferroptosis and will lead to the creation of new therapeutic avenues for clinical diseases.

5.
Orthop J Sports Med ; 12(1): 23259671231210304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188618

RESUMO

Background: Bone-tendon injury is characterized by poor self-healing. It is established that exosomes are favorable for tissue repair and regeneration. However, their effect on bone-tendon healing has not yet been determined. Purpose: To compare the effectiveness of exosomes derived from adipose-derived mesenchymal stromal cells (ADSC-Exos) and bone marrow-derived mesenchymal stromal cells (BMSC-Exos) on bone-tendon interface healing in murine rotator cuff injury model and explore the underlying mechanisms thereof. Study Design: Controlled laboratory study. Methods: A total of 63 male C57BL6 mice with rotator cuff injuries underwent surgery and were randomly assigned to a control group treated without exosomes (n = 21), an ADSC-Exos group (n = 21), or a BMSC-Exos group (n = 21). The mice were sacrificed 4 or 8 weeks after surgery, and tissues were collected for histologic examination and radiographic and biomechanical testing. For exosome tracing in vivo, mice were sacrificed 7 days after surgery. A series of functional assays (radiographic evaluation, proliferation assay, Alizarin Red staining, alkaline phosphatase staining and activity, Alcian blue staining, quantitative polymerase chain reaction analyses, and glycosaminoglycans quantification) were conducted to evaluate the effect of exosomes on the cellular behaviors of the BMSCs in vitro. A statistical analysis of multiple-group comparisons was performed by 1-way analysis of variance, followed by the Bonferroni post hoc test to assess the differences between the 2 groups. Results: The ADSCs and BMSCs were positive for surface markers CD29 and CD90 and negative for surface markers CD34 and CD45 and could differentiate into osteoblasts, chondrocytes, and adipocytes. Exosomes showed a cup- or sphere-shaped morphology and were positive for CD63 and TGS101. Local injection of ADSC-Exos and BMSC-Exos could recruit BMSCs and promote osteogenesis, chondrogenesis, and bone-tendon healing. In vitro, ADSC-Exos and BMSC-Exos could significantly promote the proliferation, migration, osteogenic differentiation, and chondrogenic differentiation ability of BMSCs. In vivo, ADSC-Exos and BMSC-Exos significantly accelerated bone-tendon injury healing, with no significant statistical difference between them. Conclusion: ADSC-Exos and BMSC-Exos exhibited similar therapeutic effects on bone-tendon healing in our murine animal model. Clinical Relevance: ADSC-Exos and BMSC-Exos may be used to develop a new cell-free therapy method for promoting rotator cuff injury repair.

6.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38157559

RESUMO

Antibiotic-resistant bacteria and associated infectious diseases pose a grave threat to human health. The antibacterial activity of metal nanoparticles has been extensively utilized in several biomedical applications, showing that they can effectively inhibit the growth of various bacteria. In this research, copper-doped polydopamine nanoparticles (Cu@PDA NPs) were synthesized through an economical process employing deionized water and ethanol as a solvent. By harnessing the high photothermal conversion efficiency of polydopamine nanoparticles (PDA NPs) and the inherent antibacterial attributes of copper ions, we engineered nanoparticles with enhanced antibacterial characteristics. Cu@PDA NPs exhibited a rougher surface and a higher zeta potential in comparison to PDA NPs, and both demonstrated remarkable photothermal conversion efficiency. Comprehensive antibacterial evaluations substantiated the superior efficacy of Cu@PDA NPs attributable to their copper content. These readily prepared nano-antibacterial materials exhibit substantial potential in infection prevention and treatment, owing to their synergistic combination of photothermal and spectral antibacterial features.


Assuntos
Indóis , Nanopartículas Metálicas , Nanopartículas , Humanos , Cobre , Polímeros/farmacologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA