Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 179: 106201, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367622

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic had grounded the world to a standstill. As the disease continues to rage two years on, it is apparent that effective therapeutics are critical for a successful endemic living with COVID-19. A dearth in suitable antivirals has prompted researchers and healthcare professionals to investigate existing and developmental drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some of these drugs initially appeared to be promising for the treatment of COVID-19, they were ultimately found to be ineffective. In this review, we provide a retrospective analysis on the merits and limitations of some of these drugs that were tested against SARS-CoV-2 as well as those used for adjuvant therapy. While many of these drugs are no longer part of our arsenal for the treatment of COVID-19, important lessons can be learnt. The recent inclusion of molnupiravir and Paxlovid™ as treatment options for COVID-19 represent our best hope to date for endemic living with COVID-19. Our viewpoints on these two drugs and their prospects as current and future antiviral agents will also be provided.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
2.
Sci Rep ; 11(1): 18620, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545127

RESUMO

Moderate hypothermia (32 °C) has been previously shown to ameliorate drug-induced liver injuries in vitro. However, there are concerns regarding its clinical relevance as it remains a challenge to perform selective liver cooling in a non-invasive manner. To reconcile this dilemma, we propose the use of pulsed cooling for regional hypothermic conditioning in liver. This involves intermittent cooling applied in pulses of 15 min each, with a one-hour recovery interval between pulses. Cooling is achieved by applying ice packs to the cutaneous region overlying the liver. Through an in vivo C57BL/6NTac mouse study, we demonstrated the feasibility of attaining localized hypothermia close to the liver while maintaining core body temperature. This has successfully ameliorated acetaminophen-induced liver injury based on the liver function tests, liver histology and total weight change. Collectively, we provide a proof of concept for pulsed external localized cooling as being clinically actionable to perform induced selective hypothermia.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/terapia , Hipotermia Induzida/métodos , Animais , Temperatura Corporal/fisiologia , Temperatura Baixa , Camundongos
3.
Dose Response ; 18(4): 1559325820970846, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239997

RESUMO

Acetaminophen (APAP) overdose accounts for the highest incidence of acute liver failure, despite the availability of an antidote i.e. N-acetylcysteine. This calls for alternative strategies to manage APAP-induced liver injury (AILI). Therapeutic hypothermia has been explored in past studies for hepatoprotection, but these phenomenal reports lack clarification of its optimal window for application, and mechanistic effects in specific AILI. Hence, we conducted an in vitro study with transforming growth factor-α transgenic mouse hepatocytes cell line, TAMH, and human liver hepatocytes cell line, L-02, where cells were conditioned with deep (25°C) or moderate (32°C) hypothermia before, during or after APAP toxicity. Cell viability was evaluated as a hallmark of cytoprotection, along with cell death. Simultaneously, cold shock proteins (CSPs) and heat shock proteins expressions were monitored; key liver functions including drug-metabolizing ability and hepatic clearance were also investigated. Herein, we demonstrated significant hepatoprotection with 24-hour moderate hypothermic conditioning during AILI and this effect sustained for at least 24 hours of rewarming. Such liver preservation was associated with a CSP-RNA-binding motif protein 3 (RBM3) as its knockdown promptly abolished the cytoprotective effects of hypothermia. With mild and reversible liver perturbations, hypothermic therapy appears promising and its RBM3 involvement deserves future exploration.

4.
Cells ; 9(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114500

RESUMO

For years, moderate hypothermia (32 °C) has been proposed as an unorthodox therapy for liver injuries, with proven hepatoprotective potential. Yet, limited mechanistic understanding has largely denied its acceptance over conventional pharmaceuticals for hepatoprotection. Today, facing a high prevalence of acetaminophen-induced liver injury (AILI) which accounts for the highest incidence of acute liver failure, hypothermia was evaluated as a potential therapy to combat AILI. For which, transforming growth factor-α transgenic mouse hepatocytes (TAMH) were subjected to concomitant 5 mM acetaminophen toxicity and moderate hypothermic conditioning for 24 h. Thereafter, its impact on mitophagy, mitochondrial biogenesis, glutathione homeostasis and c-Jun N-terminal kinase (JNK) signaling pathways were investigated. In the presence of AILI, hypothermia displayed simultaneous mitophagy and mitochondrial biogenesis to conserve functional mitochondria. Furthermore, antioxidant response was apparent with higher glutathione recycling and repressed JNK activation. These effects were, however, unremarkable with hypothermia alone without liver injury. This may suggest an adaptive response of hypothermia only to the injured sites, rendering it favorable as a potential targeted therapy. In fact, its cytoprotective effects were displayed in other DILI of similar pathology as acetaminophen i.e., valproate- and diclofenac-induced liver injury and this further corroborates the mechanistic findings of hypothermic actions on AILI.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hipotermia/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citosol/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipotermia/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Temperatura
5.
Front Pharmacol ; 9: 1018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319402

RESUMO

Liver fibrosis is a histological change often attributed to the activation of hepatic stellate cells (HSCs) and the excessive formation of scar tissues in the liver. Advanced stages of the disease frequently lead to cirrhosis. Magnesium isoglycyrrhizinate (MgIG) has been accepted as a hepatoprotective drug with the potential of alleviating inflammatory conditions and thus promote liver recovery from viral- or drug-induced injury. While MgIG has been empirically integrated into the clinics to treat some liver diseases, its anti-fibrotic effect and the associated mechanisms remain poorly characterized. Herein, we demonstrated that 1 mg/ml MgIG attenuated the production of αSMA and collagen-1 in activated HSCs using TGF-ß1-induced human HSCs LX2 as the fibrotic cell model. We found that MgIG exerts an inhibitory effect on the TGF-ß-SMAD signaling pathway by arresting the binding of downstream transcription factors SMAD2/3 and SMAD4. Furthermore, MgIG was shown to suppress proliferation and induce senescence of activated LX2 cells. Protein expression of p27 and enzymatic activity of senescence-associated ß-galactosidase were elevated upon exposure to MgIG. In addition, we observed that exposure of activated LX2 cells to MgIG reduces TGF-ß-induced apoptosis. Interestingly, a lower toxicity profile was observed when human fetal hepatocytes LO2 were exposed to the same concentration and duration of the drug, suggesting the specificity of MgIG effect toward activated HSCs. Overall, hepatoprotective concentrations of MgIG is shown to exert a direct effect on liver fibrosis through inhibiting TGF-ß-signaling, in which SMAD2/3 pathway could be one of the mechanisms responsible for the fibrotic response, thereby restoring the surviving cells toward a more quiescent phenotype. This provides critical mechanistic insights to support an otherwise empirical therapy.

6.
ACS Appl Mater Interfaces ; 10(38): 31938-31946, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30156820

RESUMO

Chronic liver dysfunction usually begins with hepatic fibrosis. To date, no effective anti-fibrotic drugs have been approved for clinical use in humans. In the current work, titanium dioxide (TiO2) nanoparticles (NPs) and silicon dioxide (SiO2) NPs are used as active inhibitors with intrinsic chemico-physico properties to block fibrosis and the associated phenotypes through acting on hepatic stellate cells (HSCs, the liver machinery for depositing scar tissues seen in fibrosis). Using LX-2 cells as the HSC model, internalized nanomaterials are found to suppress classical outcomes of cellular fibrosis, for example, inhibiting the expression of collagen I (Col-I) and alpha smooth muscle actin (α-SMA), initiated by transforming growth factor ß (TGF-ß)-activated HSCs in both a concentration-dependent and a time-dependent manner. Biochemically, these nanomaterials could also facilitate the proteolytic breakdown of collagen by up-regulation of matrix metalloproteinases (MMPs) and down-regulation of tissue inhibitors of MMPs (TIMPs). Furthermore, through regulating epithelial-mesenchymal transition (EMT) genes [e.g., E-cadherin (E-Cad) and N-cadherin (N-Cad)], the adhesion and migration profiles of TGF-ß-activated LX-2 cells treated with nanomaterials were further inhibited, reverting them to a more quiescent state. Thus, the collective results pave the new way that nanomaterials can be used as potential therapeutic inhibitors for the treatment of in vivo fibrosis.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Nanoestruturas/química , Dióxido de Silício/farmacologia , Titânio/farmacologia , Actinas/genética , Linhagem Celular , Colágeno/genética , Transição Epitelial-Mesenquimal/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Dióxido de Silício/química , Titânio/química
7.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1061-1062: 220-224, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750235

RESUMO

Regorafenib is an oral multikinase inhibitor indicated for metastatic colorectal cancer and gastrointestinal stromal tumour. Due to its extensive plasma protein binding and low calculated hepatic extraction ratio, the hepatotoxicity observed with usage of the drug may be related to its plasma exposure. To investigate the highly dynamic free:bound drug concentration for regorafenib in the plasma, a bioanalytical liquid chromatography-tandem mass spectrometric assay was developed and validated in human plasma. The concentration range of the assay was 2-1000ng/mL. Sample preparation was via protein precipitation using acetonitrile with sorafenib as the internal standard. The supernatant was injected into an ultra-performance liquid chromatographic system coupled to a triple quadrupole mass spectrometer. The analytes were separated on an AQUITY UPLC BEH C18 column (120Å, 1.7µm, 2.1mm×50mm) and eluted with a gradient elution system. The ions were detected in multiple reaction monitoring mode. The linearity, lower limit of quantification, intra-day and inter-day precision and accuracy conformed to FDA guidelines. The validated method was successfully applied to determine the effect of albumin levels in plasma on the extent of protein binding of regorafenib. The results indicated that physiologically-relevant levels of albumin were found to have no significant effect on the extent of protein binding of regorafenib, hence imposing minimal effect on drug disposition.


Assuntos
Cromatografia Líquida/métodos , Compostos de Fenilureia/metabolismo , Piridinas/metabolismo , Albumina Sérica/análise , Albumina Sérica/metabolismo , Espectrometria de Massas em Tandem/métodos , Estabilidade de Medicamentos , Humanos , Limite de Detecção , Modelos Lineares , Compostos de Fenilureia/análise , Piridinas/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA