Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109231, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439966

RESUMO

ApoE regulates neurogenesis, although how it influences genetic programs remains elusive. Cortical neurons induced from isogenic control and ApoE-/- human neural stem cells (NSCs) recapitulated key transcriptomic signatures of in vivo counterparts identified from single-cell human midbrain. Surprisingly, ApoE expression in NSC and neural progenitor cells (NPCs) is not required for differentiation. Instead, ApoE prevents the over-proliferation of non-neuronal cells during extended neuronal culture when it is not expressed. Elevated miR-199a-5p level in ApoE-/- cells lowers the EZH1 protein and the repressive H3K27me3 mark, a phenotype rescued by miR-199a-5p steric inhibitor. Reduced H3K27me3 at genes linked to extracellular matrix organization and angiogenesis in ApoE-/- NPC correlates with their aberrant expression and phenotypes in neurons. Interestingly, the ApoE coding sequence, which contains many predicted miR-199a-5p binding sites, can repress miR-199a-5p without translating into protein. This suggests that ApoE maintains neurons integrity through the target-directed miRNA degradation of miR-199a-5p, imparting the H3K27me3-mediated repression of non-neuronal genes during differentiation.

2.
Proc Natl Acad Sci U S A ; 119(37): e2204179119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067305

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-ß plaques and Tau tangles in brain tissues. Recent studies indicate that aberrant splicing and increased level of intron retention is linked to AD pathogenesis. Bioinformatic analysis revealed increased retention of intron 11 at the Tau gene in AD female dorsal lateral prefrontal cortex as compared to healthy controls, an observation validated by quantitative polymerase chain reaction using different brain tissues. Retention of intron 11 introduces a premature stop codon, resulting in the production of truncated Tau11i protein. Probing with customized antibodies designed against amino acids encoded by intron 11 showed that Tau11i protein is more enriched in AD hippocampus, amygdala, parietal, temporal, and frontal lobe than in healthy controls. This indicates that Tau messenger RNA with the retained intron is translated in vivo instead of being subjected to nonsense-mediated decay. Compared to full-length Tau441 isoform, ectopically expressed Tau11i forms higher molecular weight species, is enriched in Sarkosyl-insoluble fraction, and exhibits greater protein stability in cycloheximide assay. Stably expressed Tau11i also shows weaker colocalization with α-tubulin of microtubule network in human mature cortical neurons as compared to Tau441. Endogenous Tau11i is enriched in Sarkosyl-insoluble fraction in AD hippocampus and forms aggregates that colocalize weakly with Tau4R fibril-like structure in AD temporal lobe. The elevated level of Tau11i protein in AD brain tissues tested, coupled with biochemical properties resembling pathological Tau species suggest that retention of intron 11 of Tau gene might be an early biomarker of AD pathology.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Encéfalo/metabolismo , Diagnóstico Precoce , Feminino , Humanos , Íntrons/genética , Placa Amiloide/metabolismo , Proteínas tau/análise , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Biomolecules ; 11(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944553

RESUMO

Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.


Assuntos
DNA/metabolismo , Integrases/química , Integrases/metabolismo , Spumavirus/enzimologia , Acetatos/metabolismo , Sítios de Ligação , Cloretos/metabolismo , Esterificação , Manganês/metabolismo , Oligonucleotídeos , Spumavirus/química , Proteínas Virais/química , Proteínas Virais/metabolismo
4.
J Biol Chem ; 296: 100550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744295

RESUMO

Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.


Assuntos
Histonas/metabolismo , Integrases/metabolismo , Nucleossomos/metabolismo , Spumavirus/metabolismo , Proteínas Virais/metabolismo , Integração Viral , Domínio Catalítico , Cromatina/genética , Cromatina/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Genoma Viral , Humanos , Integrases/genética , Multimerização Proteica , Spumavirus/genética , Spumavirus/crescimento & desenvolvimento , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA