Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 974: 176630, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692426

RESUMO

Osteoporosis is the most common bone disorder, in which an imbalance between osteoclastic bone resorption and osteoblastic bone formation disrupts bone homeostasis. Osteoporosis management using anti-osteoclastic agents is a promising strategy; however, this remains an unmet need. Sphingosine-1-phosphate (S1P) and its receptors (S1PRs) are essential for maintaining bone homeostasis. Here, we identified that Siponimod, a Food and Drug Administration-approved S1PR antagonist for the treatment of multiple sclerosis, shows promising therapeutic effects against osteoporosis by inhibiting osteoclast formation and function. We found that Siponimod inhibited osteoclast formation in a dose-dependent manner without causing cytotoxicity. Podosome belt staining and bone resorption assays indicated that Siponimod treatment impaired osteoclast function. Western blot and qPCR assays demonstrated that Siponimod suppressed the expression of osteoclast-specific markers, including C-Fos, Nftac1, and Ctsk. Mechanistically, we validated that Siponimod downregulated receptor activator of nuclear factor kappa B ligand (RANKL)-induced Mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathways during osteoclastogenesis. Moreover, in a preclinical mouse model, Siponimod prevented ovariectomy-induced bone loss by suppressing osteoclast activity in vivo. Collectively, these results suggest that Siponimod could serve as an alternative therapeutic agent for the treatment of osteoporosis.


Assuntos
Azetidinas , Compostos de Benzil , Reposicionamento de Medicamentos , Esclerose Múltipla , Osteoclastos , Osteoporose , Animais , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Feminino , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Osteogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante RANK/metabolismo , Humanos
2.
Elife ; 122024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488837

RESUMO

Hepatic ischemia/reperfusion injury (HIRI) is a common and inevitable factor leading to poor prognosis in various liver diseases, making the outcomes of current treatments in clinic unsatisfactory. Metformin has been demonstrated to be beneficial to alleviate HIRI in recent studies, however, the underpinning mechanism remains unclear. In this study, we found metformin mitigates HIRI-induced ferroptosis through reshaped gut microbiota in mice, which was confirmed by the results of fecal microbiota transplantation treatment but showed the elimination of the beneficial effects when gut bacteria were depleted using antibiotics. Detailedly, through 16S rRNA and metagenomic sequencing, we identified that the metformin-reshaped microbiota was characterized by the increase of gamma-aminobutyric acid (GABA) producing bacteria. This increase was further confirmed by the elevation of GABA synthesis key enzymes, glutamic acid decarboxylase and putrescine aminotransferase, in gut microbes of metformin-treated mice and healthy volunteers. Furthermore, the benefit of GABA against HIRI-induced ferroptosis was demonstrated in GABA-treated mice. Collectively, our data indicate that metformin can mitigate HIRI-induced ferroptosis by reshaped gut microbiota, with GABA identified as a key metabolite.


Assuntos
Ferroptose , Microbioma Gastrointestinal , Metformina , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Metformina/farmacologia , RNA Ribossômico 16S , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia , Ácido gama-Aminobutírico/farmacologia
3.
Probiotics Antimicrob Proteins ; 16(2): 383-393, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36897512

RESUMO

Wear particles generated from total joint replacements induce chronic osteolysis mediated by inflammatory upregulation, which leads to implant failure. Recent studies have suggested an important role of the gut microbiota in modulating the host's metabolism and immune system, leading to alterations in bone mass. Following gavage with P. histicola, micro-CT and HE staining revealed that osteolysis was significantly reduced in titanium (Ti)-treated mice. Immunofluorescence analysis revealed an increased macrophage (M)1/M2 ratio in the guts of Ti-treated mice, which decreased when P. histicola was added. P. histicola was also found to upregulate the tight junction proteins ZO-1, occludin, claudin-1, and MUC2 in the gut, reduce the levels of inflammatory factors IL-1ß, IL-6, IL-8, and TNF-α, primarily in the ileum and colon, and decrease the expression of IL-1ß and TNF-α and increase the level of IL-10 in the serum and cranium. Furthermore, P. histicola treatment resulted in a significant downregulation of CTX-1, RANKL, and RANKL/OPG. These findings demonstrate that P. histicola significantly mitigates osteolysis in Ti-treated mice by improving intestinal microbiota that repairs intestinal leakage and reduces systemic and local inflammation which in turn inhibits RANKL expression for bone resorption. P. histicola treatment may thus be therapeutically beneficial for particle-induced osteolysis.


Assuntos
Microbioma Gastrointestinal , Osteólise , Prevotella , Camundongos , Animais , Osteólise/induzido quimicamente , Osteólise/metabolismo , Osteólise/prevenção & controle , Fator de Necrose Tumoral alfa , Osteoclastos/metabolismo , Titânio/efeitos adversos , Titânio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...