Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Rep ; 13(1): 22656, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114509

RESUMO

Heart failure (HF) presents manifestations in both cardiac and vascular abnormalities. Pulmonary hypertension (PH) is prevalent in up 50% of HF patients. While pulmonary arterial hypertension (PAH) is closely associated with pulmonary artery (PA) stiffness, the association of HF caused, post-capillary PH and PA stiffness is unknown. We aimed to assess and compare PA stiffness and blood flow hemodynamics noninvasively across HF entities and control subjects without HF using CMR. We analyzed data of a prospectively conducted study with 74 adults, including 55 patients with HF across the spectrum (20 HF with preserved ejection fraction [HFpEF], 18 HF with mildly-reduced ejection fraction [HFmrEF] and 17 HF with reduced ejection fraction [HFrEF]) as well as 19 control subjects without HF. PA stiffness was defined as reduced vascular compliance, indicated primarily by the relative area change (RAC), altered flow hemodynamics were detected by increased flow velocities, mainly by pulse wave velocity (PWV). Correlations between the variables were explored using correlation and linear regression analysis. PA stiffness was significantly increased in HF patients compared to controls (RAC 30.92 ± 8.47 vs. 50.08 ± 9.08%, p < 0.001). PA blood flow parameters were significantly altered in HF patients (PWV 3.03 ± 0.53 vs. 2.11 ± 0.48, p < 0.001). These results were consistent in all three HF groups (HFrEF, HFmrEF and HFpEF) compared to the control group. Furthermore, PA stiffness was associated with higher NT-proBNP levels and a reduced functional status. PA stiffness can be assessed non-invasively by CMR. PA stiffness is increased in HFrEF, HFmrEF and HFpEF patients when compared to control subjects.Trial registration The study was registered at the German Clinical Trials Register (DRKS, registration number: DRKS00015615).


Assuntos
Insuficiência Cardíaca , Adulto , Humanos , Artéria Pulmonar/diagnóstico por imagem , Análise de Onda de Pulso , Volume Sistólico/fisiologia , Espectroscopia de Ressonância Magnética , Prognóstico
2.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504550

RESUMO

BACKGROUND: Left ventricular global longitudinal strain (LV GLS) is a superior predictor of adverse cardiac events in patients with myocardial infarction and heart failure. We investigated the ability of morphological features of infarcted myocardium to detect acute left ventricular (LV) dysfunction and predict LV functional recovery after three months in patients with acute ST-segment elevation myocardial infarction (STEMI). METHODS: Sixty-six STEMI patients were included in the C-reactive protein (CRP) apheresis in Acute Myocardial Infarction Study (CAMI-1). LV ejection fraction (LVEF), LV GLS, LV global circumferential strain (LV GCS), infarct size (IS), area-at-risk (AAR), and myocardial salvage index (MSI) were assessed by CMR 5 ± 3 days (baseline) and 12 ± 2 weeks after (follow-up) the diagnosis of first acute STEMI. RESULTS: Significant changes in myocardial injury parameters were identified after 12 weeks of STEMI diagnosis. IS decreased from 23.59 ± 11.69% at baseline to 18.29 ± 8.32% at follow-up (p < 0.001). AAR and MVO also significantly reduced after 12 weeks. At baseline, there were reasonably moderate correlations between IS and LVEF (r = -0.479, p < 0.001), LV GLS (r = 0.441, p < 0.001) and LV GCS (r = 0.396, p = 0.001) as well as between AAR and LVEF (r = -0.430, p = 0.003), LV GLS (r = 0.501, p < 0.001) and weak with LV GCS (r = 0.342, p = 0.020). At follow-up, only MSI and change in LV GCS over time showed a weak but significant correlation (r = -0.347, p = 0.021). Patients with larger AAR at baseline improved more in LVEF (p = 0.019) and LV GLS (p = 0.020) but not in LV GCS. CONCLUSION: The CMR tissue characteristics of myocardial injury correlate with the magnitude of LV dysfunction during the acute stage of STEMI. AAR predicts improvement in LVEF and LV GLS, while MSI is a sensitive marker of LV GCS recovery at three months follow-up after STEMI.

4.
Europace ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38193546

RESUMO

AIMS: Ongoing clinical trials investigate the therapeutic value of stereotactic cardiac radioablation (cRA) in heart failure patients with ventricular tachycardia. Animal data indicate an effect on local cardiac conduction properties. However, the exact mechanism of cRA in patients remains elusive. Aim of the current study was to investigate in vivo and in vitro myocardial properties in heart failure and ventricular tachycardia upon cRA. METHODS AND RESULTS: High-density 3D electroanatomic mapping in sinus rhythm was performed in a patient with a left ventricular assist device and repeated ventricular tachycardia episodes upon several catheter-based endocardial radio-frequency ablation attempts. Subsequent to electroanatomic mapping and cRA of the left ventricular septum, two additional high-density electroanatomic maps were obtained at 2- and 4-month post-cRA. Myocardial tissue samples were collected from the left ventricular septum during 4-month post-cRA from the irradiated and borderzone regions. In addition, we performed molecular biology and mitochondrial density measurements of tissue and isolated cardiomyocytes. Local voltage was altered in the irradiated region of the left ventricular septum during follow-up. No change of local voltage was observed in the control (i.e. borderzone) region upon irradiation. Interestingly, local activation time was significantly shortened upon irradiation (2-month post-cRA), a process that was reversible (4-month post-cRA). Molecular biology unveiled an increased expression of voltage-dependent sodium channels in the irradiated region as compared with the borderzone, while Connexin43 and transforming growth factor beta were unchanged (4-month post-cRA). Moreover, mitochondrial density was decreased in the irradiated region as compared with the borderzone. CONCLUSION: Our study supports the notion of transiently altered cardiac conduction potentially related to structural and functional cellular changes as an underlying mechanism of cRA in patients with ventricular tachycardia.


Assuntos
Ablação por Cateter , Insuficiência Cardíaca , Taquicardia Ventricular , Humanos , Miócitos Cardíacos , Técnicas Eletrofisiológicas Cardíacas/métodos , Ventrículos do Coração , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Arritmias Cardíacas , Ablação por Cateter/métodos
5.
Circ Cardiovasc Imaging ; 15(4): e013745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35360924

RESUMO

BACKGROUND: The calculation of extracellular volume (ECV) in cardiac magnetic resonance requires hematocrit, limiting its applicability in clinical practice. Based on the linear relationship between hematocrit and blood T1 relaxivity, a synthetic ECV could be estimated without a blood sample. We aim to develop and test regression models for synthetic ECV without blood sampling in 1.5-T and 3.0-T scanners. METHODS: A total of 1101 subjects who underwent cardiac magnetic resonance scanning with native and postcontrast T1 mapping and venous hematocrit within 24 hours were retrospectively enrolled. Subjects were randomly split into derivation (n=550) and validation (n=551) subgroups for each scanner. Different regression models were derived controlling for sex, field strength, and left ventricle/right ventricle blood pool and validated in the validation group. We performed additional validation analyses in subgroups of patients with histological validation (n=17), amyloidosis (n=29), anemia (n=185), and reduced ejection fraction (n=322). RESULTS: In the derivation group, 8 specific models and 2 common estimate models were derived. In the validation group, using specific models, synthetic ECV had high agreement with conventional ECV (R2, 0.87; P<0.0001 and R2, 0.88, P<0.0001; -0.16% and -0.10%, left ventricle and right ventricle model, respectively). Common models also performed well (R2, 0.88; P<0.0001 and R2, 0.89, P<0.0001; -0.21% and -0.18%, left ventricle and right ventricle model, respectively). Histological validation demonstrated equal performance of synthetic and measured ECV. Synthetic ECV as calculated by the common model showed a bias in the anemia cohort significantly reduced by the specific model (-2.45 to -1.28, right ventricle common and specific model, respectively). CONCLUSIONS: Synthetic ECV provided a promising way to calculate ECV without blood sampling. Specific models could provide the most accurate value, while common models could be more suitable in routine clinical practice because of their simplicity while maintaining adequate accuracy.


Assuntos
Imagem Cinética por Ressonância Magnética , Miocárdio , Meios de Contraste , Fibrose , Humanos , Espectroscopia de Ressonância Magnética , Miocárdio/patologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
6.
Front Cardiovasc Med ; 9: 829392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463791

RESUMO

Serious adverse events associated with new vaccines targeting SARS-CoV-2 are of high interest to the public and to public health as a worldwide mass immunization campaign has been initiated to contain the ongoing COVID-19 pandemic. We describe a series of 4 individuals with signs of a myocarditis/pericarditis according to cardiac MRI results in temporal association with currently in the European Union authorized SARS-CoV-2 vaccines. We found mild abnormal MRI results independent of the type of SARS-CoV-2 vaccine. There is a need of continuing monitoring outcomes of myocarditis cases after COVID-19 vaccination as recently published cases suggest an uncomplicated short-term course whereas the long-term implications are not yet known but taking the available evidence into account the benefits of using COVID-19 vaccines still clearly outweigh the risks.

7.
Int J Cardiovasc Imaging ; 38(9): 2057-2071, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37726611

RESUMO

Cardiac involvement has been described in varying proportions of patients recovered from COVID-19 and proposed as a potential cause of prolonged symptoms, often described as post-COVID or long COVID syndrome. Recently, cardiac complications have been reported from COVID-19 vaccines as well. We aimed to compare CMR-findings in patients with clinical cardiac symptoms after COVID-19 and after vaccination. From May 2020 to May 2021, we included 104 patients with suspected cardiac involvement after COVID-19 who received a clinically indicated cardiac magnetic resonance (CMR) examination at a high-volume center. The mean time from first positive PCR to CMR was 112 ± 76 days. During their COVID-19 disease, 21% of patients required hospitalization, 17% supplemental oxygen and 7% mechanical ventilation. In 34 (32.7%) of patients, CMR provided a clinically relevant diagnosis: Isolated pericarditis in 10 (9.6%), %), acute myocarditis (both LLC) in 7 (6.7%), possible myocarditis (one LLC) in 5 (4.8%), ischemia in 4 (3.8%), recent infarction in 2 (1.9%), old infarction in 4 (3.8%), dilated cardiomyopathy in 3 (2.9%), hypertrophic cardiomyopathy in 2 (1.9%), aortic stenosis, pleural tumor and mitral valve prolapse each in 1 (1.0%). Between May 2021 and August 2021, we examined an additional 27 patients with suspected cardiac disease after COVID-19 vaccination. Of these, CMR provided at least one diagnosis in 22 (81.5%): Isolated pericarditis in 4 (14.8%), acute myocarditis in 9 (33.3%), possible myocarditis (acute or subsided) in 6 (22.2%), ischemia in 3 (37.5% out of 8 patients with stress test), isolated pericardial effusion (> 10 mm) and non-compaction-cardiomyopathy each in 1 (3.7%). The number of myocarditis diagnoses after COVID-19 was highly dependent on the stringency of the myocarditis criteria applied. When including only cases of matching edema and LGE and excluding findings in the right ventricular insertion site, the number of cases dropped from 7 to 2 while the number of cases after COVID-19 vaccination remained unchanged at 9. While myocarditis is an overall rare side effect after COVID-19 vaccination, it is currently the leading cause of myocarditis in our institution due to the large number of vaccinations applied over the last months. Contrary to myocarditis after vaccination, LGE and edema in myocarditis after COVID-19 often did not match or were confined to the RV-insertion site. Whether these cases truly represent myocarditis or a different pathological entity is to be determined in further studies.


Assuntos
COVID-19 , Miocardite , Humanos , Vacinas contra COVID-19/efeitos adversos , Miocardite/diagnóstico por imagem , Miocardite/etiologia , Síndrome de COVID-19 Pós-Aguda , Valor Preditivo dos Testes , Espectroscopia de Ressonância Magnética
8.
J Am Heart Assoc ; 10(17): e020351, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34423658

RESUMO

Background Phenylketonuria is the most common inborn error of amino acid metabolism, where oxidative stress and collateral metabolic abnormalities are likely to cause cardiac structural and functional modifications. We aim herein to characterize the cardiac phenotype of adult subjects with phenylketonuria using advanced cardiac imaging. Methods and Results Thirty-nine adult patients with phenylketonuria (age, 30.5±8.7 years; 10-year mean phenylalanine concentration, 924±330 µmol/L) and 39 age- and sex-matched healthy controls were investigated. Participants underwent a comprehensive cardiac magnetic resonance and echocardiography examination. Ten-year mean plasma levels of phenylalanine and tyrosine were used to quantify disease activity and adherence to treatment. Patients with phenylketonuria had thinner left ventricular walls (septal end-diastolic thickness, 7.0±17 versus 8.8±1.7 mm [P<0.001]; lateral thickness, 6.1±1.4 versus 6.8±1.2 mm [P=0.004]), more dilated left ventricular cavity (end-diastolic volume, 87±14 versus 80±14 mL/m2 [P=0.0178]; end-systolic volume, 36±9 versus 29±8 mL/m2 [P<0.001]), lower ejection fraction (59±6% versus 64±6% [P<0.001]), reduced systolic deformation (global circumferential strain, -29.9±4.2 % versus -32.2±5.0 % [P=0.027]), and lower left ventricular mass (38.2±7.9 versus 47.8±11.0 g/m2 [P<0.001]). T1 native values were decreased (936±53 versus 996±26 ms [P<0.001]), with particular low values in patients with phenylalanine >1200 µmol/L (909±48 ms). Both mean phenylalanine (P=0.013) and tyrosine (P=0.035) levels were independently correlated with T1; and in a multiple regression model, higher phenylalanine levels and higher left ventricular mass associate with lower T1. Conclusions Cardiac phenotype of adult patients with phenylketonuria reveals some traits of an early-stage cardiomyopathy. Regular cardiology follow-up, tighter therapeutic control, and prophylaxis of cardiovascular risk factors, in particular dyslipidemia, are recommended.


Assuntos
Cardiomiopatias , Fenilcetonúrias , Adulto , Cardiomiopatias/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Fenótipo , Fenilalanina/sangue , Fenilcetonúrias/complicações , Tirosina/sangue , Adulto Jovem
9.
Front Cardiovasc Med ; 8: 645693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33829049

RESUMO

Aims: Aortic valve replacement (AVR) may result in reverse cardiac remodeling. We aimed to assess long-term changes in the myocardium following AVR by Cardiac Magnetic Resonance Imaging (CMR). Methods: We prospectively observed the long-term left ventricular (LV) function and structure of 27 patients with AVR [n = 19 with aortic stenosis (AS); n = 8 with aortic regurgitation (AR)] by CMR. Patients underwent CMR before, as well as 1, 5, and 10 years after AVR. We evaluated clinical parameters, LV volumes, mass, geometry, ejection fraction (EF), global myocardial longitudinal strain (MyoGLS), global myocardial circular strain (MyoGCS), hemodynamic forces (HemForces), and Late Gadolinium Enhancement (LGE). Results: The median of LVMI, EDVI, and ESVI decreased in both groups. Patients with AR had higher initial values of EDVI and ESVI and showed a more prominent initial reduction. In AS, MyoGLS improved already after 1 year and remained constant afterward, whereas, in AR no improvement of MyoGLS was found. MyoGCS remained unchanged in the AS group but deteriorated in the AR group over 10 years. Ejection fraction (EF) was higher in AS patients compared to AR 10 years post-AVR. Late gadolinium enhancement (LGE) could be found more frequently in AS patients. Conclusion: CMR was well suited to investigate myocardial changes over a 10-year follow up period in patients with aortic valve disease. Regarding the long-term functional changes following AVR, patients with AR seemed to benefit less from AVR compared to AS patients. Fibrosis was more common in AS, but this did not reflect functional evolution in these patients. Close monitoring seems indispensable to avoid irreversible structural damage of the heart and to perform AVR at an appropriate stage.

10.
ESC Heart Fail ; 8(2): 890-897, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539681

RESUMO

AIMS: Although heart failure (HF) is a leading cause for hospitalization and mortality, normalized and comparable non-invasive assessment of haemodynamics and myocardial action remains limited. Moreover, myocardial deformation has not been compared between the guideline-defined HF entities. The distribution of affected and impaired segments within the contracting left ventricular (LV) myocardium have also not been compared. Therefore, we assessed myocardial function impairment by strain in patients with HF and control subjects by magnetic resonance imaging after clinically phenotyping these patients. METHODS AND RESULTS: This prospective study conducted at two centres in Germany between 2017 and 2018 enrolled stable outpatient subjects with HF [n = 56, including HF with reduced ejection fraction (HFrEF), HF with mid-range ejection fraction (HFmrEF), and HF with preserved ejection fraction (HFpEF)] and a control cohort (n = 12). Parameters assessed included measures for external myocardial function, for example, cardiac index and myocardial deformation measurements by cardiovascular magnetic resonance imaging, left ventricular global longitudinal strain (GLS), the global circumferential strain (GCS) and the regional distribution of segment deformation within the LV myocardium, as well as basic phenotypical characteristics. Comparison of the cardiac indices at rest showed no differences neither between the HF groups nor between the control group and HF patients (one-way ANOVA P = 0.70). The analysis of the strain data revealed differences between all groups in both LV GLS (One-way ANOVA: P < 0.01. Controls vs. HFpEF: -20.48 ± 1.62 vs. -19.27 ± 1.25. HFpEF vs. HFmrEF: -19.27 ± 1.25 vs. -15.72 ± 2.76. HFmrEF vs. HFrEF: -15.72 ± 2.76 vs. -11.51 ± 3.97.) and LV GCS (One-way ANOVA: P < 0.01. Controls vs. HFpEF: -19.74 ± 2.18 vs. -17.47 ± 2.10. HFpEF vs. HFmrEF: -17.47 ± 2.10 vs. -12.78 ± 3.47. HFrEF: -11.41 ± 3.27). Comparing the segment deformation distribution patterns highlighted the discriminating effect between the groups was much more prominent between the groups (one-way ANOVA P < 0.01) when compared by a score combining regional effects and a global view on the LV. Further analyses of the patterns among the segments affected showed that while the LVEF is preserved in HFpEF, the segments impaired in their contractility are located in the ventricular septum. The worse the LVEF is, the more segments are affected, but the septum remains an outstanding location with the most severe contractility impairment throughout the HF entities. CONCLUSIONS: While cardiac index at rest did not differ significantly between controls and stable HF patients suffering from HFrEF, HFmrEF, or HFpEF, the groups did differ significantly in LV GLS and LV GCS values. Regional strain analysis revealed that the LV septum is the location affected most, with reduced values already visible in HFpEF and further reductions in HFmrEF and HFrEF.


Assuntos
Insuficiência Cardíaca , Alemanha , Insuficiência Cardíaca/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Miocárdio , Estudos Prospectivos , Volume Sistólico
11.
Front Cardiovasc Med ; 8: 737257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004872

RESUMO

Background: Despite the ongoing global pandemic, the impact of COVID-19 on cardiac structure and function is still not completely understood. Myocarditis is a rare but potentially serious complication of other viral infections with variable recovery, and is, in some cases, associated with long-term cardiac remodeling and functional impairment. Aim: To assess myocardial injury in patients who recently recovered from an acute SARS-CoV-2 infection with advanced cardiac magnetic resonance imaging (CMR) and endomyocardial biopsy (EMB). Methods: In total, 32 patients with persistent cardiac symptoms after a COVID-19 infection, 22 patients with acute classic myocarditis not related to COVID-19, and 16 healthy volunteers were included in this study and underwent a comprehensive baseline CMR scan. Of these, 10 patients post COVID-19 and 13 with non-COVID-19 myocarditis underwent a follow-up scan. In 10 of the post-COVID-19 and 15 of the non-COVID-19 patients with myocarditis endomyocardial biopsy (EMB) with histological, immunohistological, and molecular analysis was performed. Results: In total, 10 (31%) patients with COVID-19 showed evidence of myocardial injury, eight (25%) presented with myocardial oedema, eight (25%) exhibited global or regional systolic left ventricular (LV) dysfunction, and nine (28%) exhibited impaired right ventricular (RV) function. However, only three (9%) of COVID-19 patients fulfilled updated CMR-Lake Louise criteria (LLC) for acute myocarditis. Regarding EMB, none of the COVID-19 patients but 87% of the non-COVID-19 patients with myocarditis presented histological findings in keeping with acute or chronic inflammation. COVID-19 patients with severe disease on the WHO scale presented with reduced biventricular longitudinal function, increased RV mass, and longer native T1 times compared with those with only mild or moderate disease. Conclusions: In our cohort, CMR and EMB findings revealed that SARS-CoV-2 infection was associated with relatively mild but variable cardiac involvement. More symptomatic COVID-19 patients and those with higher clinical care demands were more likely to exhibit chronic inflammation and impaired cardiac function compared to patients with milder forms of the disease.

12.
J Cardiovasc Magn Reson ; 22(1): 51, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32698811

RESUMO

BACKGROUND: Right ventricular (RV) strain is a useful predictor of prognosis in various cardiovascular diseases, including those traditionally believed to impact only the left ventricle. We aimed to determine inter-modality and inter-technique agreement in RV longitudinal strain (LS) measurements between currently available cardiovascular magnetic resonance (CMR) and echocardiographic techniques, as well as their reproducibility and the impact of layer-specific strain measurements. METHODS: RV-LS was determined in 62 patients using 2D speckle tracking echocardiography (STE, Epsilon) and two CMR techniques: feature tracking (FT) and strain-encoding (SENC), and in 17 healthy subjects using FT and SENC only. Measurements included global and free-wall LS (GLS, FWLS). Inter-technique agreement was assessed using linear regression and Bland-Altman analysis. Reproducibility was quantified using intraclass correlation (ICC) and coefficients of variation (CoV). RESULTS: We found similar moderate agreement between both CMR techniques and STE in patients: r = 0.57-0.63 for SENC; r = 0.50-0.62 for FT. The correlation between SENC and STE was better for GLS (r = 0.63) than for FWLS (r = 0.57). Conversely, the correlation between FT and STE was higher for FWLS (r = 0.60-0.62) than GLS (r = 0.50-0.54). FT-midmyocardial strain correlated better with SENC and STE than FT-subendocardial strain. The agreement between SENC and FT was fair (r = 0.36-0.41, bias: - 6.4 to - 10.4%) in the entire study group. All techniques except FT showed excellent reproducibility (ICC: 0.62-0.96, CoV: 0.04-0.30). CONCLUSIONS: We found only moderate inter-modality agreement with STE in RV-LS for both FT and SENC and poor agreement when comparing between the CMR techniques. Different modalities and techniques should not be used interchangeably to determine and monitor RV strain.


Assuntos
Ecocardiografia/métodos , Imageamento por Ressonância Magnética/métodos , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologia , Adulto , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto Jovem
13.
ESC Heart Fail ; 7(5): 3240-3245, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32567247

RESUMO

AIMS: The diagnostic and treatment of patients with heart failure with preserved ejection fraction (HFpEF) are both hampered by an incomplete understanding of the pathophysiology of the disease. Novel imaging tools to adequately identify these patients from individuals with a normal cardiac function and respectively patients with HF with reduced EF are warranted. Computing multilayer myocardial strain with feature tracking is a fast and accurate method to assess cardiac deformation. Our purpose was to assess the HFpEF diagnostic ability of multilayer strain parameters and compare their sensitivity and specificity with other established parameters. METHODS AND RESULTS: We included 20 patients with a diagnosis of HFpEF and, respectively, 20 matched controls. We assessed using feature-tracking cardiac magnetic resonance longitudinal and circumferential myocardial strain at three distinct layers of the myocardium: subendocardial (Endo-), mid-myocardial (Myo-), and subepicardial (Epi-). Comparatively, we additionally assessed various others clinical, imaging, and biochemical parameters with a putative role in HFpEF diagnostic: left ventricular end-diastolic volume (LVEDV), left ventricular mass (LVM), interventricular septum (IVS) wall thickness and free wall thickness, left atrial volume and strain, septal and lateral mitral annular early diastolic velocity (e`), E/e´ ratio, and plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP). Global longitudinal strain (GLS) is significantly impaired at Endo (-20.8 ± 4.0 vs. -23.2 ± 3.4, P = 0.046), Myo- (-18.0 ± 3.0 vs. -21.0 ± 2.5, P = 0.002), and Epi- (-12.2 ± 2.0 vs. -16.2 ± 2.5, P < 0.001) levels. Compared with any other imaging parameter, an Epi-GLS lower than 13% shows the highest ability to detect patients with HFpEF [area under the curve (AUC) = 0.90 (0.81-1), P < 0.001] and in tandem with NT-proBNP can diagnose with maximal sensibility (93%) and specificity (100%), patients with HFpEF from normal, composed variable [AUC = 0.98 (0.95-1), P < 0.001]. In a logistic regression model, a composite predictive variable taking into account both GLS Epi and NT-proBNP values in each individual subject reached a sensitivity of 89% and a specificity of 100% with an AUC of 0.98 (0.95-1), P < 0.001, to detect HFpEF. CONCLUSIONS: Epi-GLS is a promising new imaging parameter to be considered in the clinical assessment of HFpEF patients. Given its excellent specificity, in tandem with a highly sensitive parameter such as NT-proBNP, Epi-GLS holds the potential to greatly improve the current diagnostic algorithms.


Assuntos
Insuficiência Cardíaca , Coração , Insuficiência Cardíaca/diagnóstico , Humanos , Miocárdio , Volume Sistólico
14.
Front Immunol ; 11: 575635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33692775
15.
ESC Heart Fail ; 7(2): 523-532, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31800152

RESUMO

AIMS: A multitude of cardiac magnetic resonance (CMR) techniques are used for myocardial strain assessment; however, studies comparing them are limited. We sought to compare global longitudinal (GLS), circumferential (GCS), segmental longitudinal (SLS), and segmental circumferential (SCS) strain values, as well as reproducibility between CMR feature tracking (FT), tagging (TAG), and fast-strain-encoded (fast-SENC) CMR techniques. METHODS AND RESULTS: Eighteen subjects (11 healthy volunteers and seven patients with heart failure) underwent two CMR scans (1.5T, Philips) with identical parameters. Global and segmental strain values were measured using FT (Medis), TAG (Medviso), and fast-SENC (Myocardial Solutions). Friedman's test, linear regression, Pearson's correlation coefficient, and Bland-Altman analyses were used to assess differences and correlation in measured GLS and GCS between the techniques. Two-way mixed intra-class correlation coefficient (ICC), coefficient of variance (COV), and Bland-Altman analysis were used for reproducibility assessment. All techniques correlated closely for GLS (Pearson's r: 0.86-0.92) and GCS (Pearson's r: 0.85-0.94). Intra-observer and inter-observer reproducibility was excellent in all techniques for both GLS (ICC 0.92-0.99, CoV 2.6-10.1%) and GCS (ICC 0.89-0.99, CoV 4.3-10.1%). Inter-study reproducibility was similar for all techniques for GLS (ICC 0.91-0.96, CoV 9.1-10.8%) and GCS (ICC 0.95-0.97, CoV 7.6-10.4%). Combined segmental intra-observer reproducibility was good in all techniques for SLS (ICC 0.914-0.953, CoV 12.35-24.73%) and SCS (ICC 0.885-0.978, CoV 10.76-19.66%). Combined inter-study SLS reproducibility was the worst in FT (ICC 0.329, CoV 42.99%), while fast-SENC performed the best (ICC 0.844, CoV 21.92%). TAG had the best reproducibility for combined inter-study SCS (ICC 0.902, CoV 19.08%), while FT performed the worst (ICC 0.766, CoV 32.35%). Bland-Altman analysis revealed considerable inter-technique biases for GLS (FT vs. fast-SENC 3.71%; FT vs. TAG 8.35%; and TAG vs. fast-SENC 4.54%) and GCS (FT vs. fast-SENC 2.15%; FT vs. TAG 6.92%; and TAG vs. fast-SENC 2.15%). Limits of agreement for GLS ranged from ±3.1 (TAG vs. fast-SENC) to ±4.85 (FT vs. TAG) for GLS and ±2.98 (TAG vs. fast-SENC) to ±5.85 (FT vs. TAG) for GCS. CONCLUSIONS: We found significant differences in measured GLS and GCS between FT, TAG, and fast-SENC. Global strain reproducibility was excellent for all techniques. Acquisition-based techniques had better reproducibility than FT for segmental strain.


Assuntos
Insuficiência Cardíaca/diagnóstico por imagem , Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Estudos de Casos e Controles , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Disfunção Ventricular Esquerda/fisiopatologia
16.
J Clin Med ; 8(11)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694263

RESUMO

The characteristics and optimal management of heart failure with a moderately reduced ejection fraction (HFmrEF, LV-EF 40-50%) are still unclear. Advanced cardiac MRI offers information about function, fibrosis and inflammation of the myocardium, and might help to characterize HFmrEF in terms of adverse cardiac remodeling. We, therefore, examined 17 patients with HFpEF, 18 with HFmrEF, 17 with HFrEF and 17 healthy, age-matched controls with cardiac MRI (Phillips 1.5 T). T1 and T2 relaxation time mapping was performed and the extracellular volume (ECV) was calculated. Global circumferential (GCS) and longitudinal strain (GLS) were derived from cine images. GLS (-15.7 ± 2.1) and GCS (-19.9 ± 4.1) were moderately reduced in HFmrEF, resembling systolic dysfunction. Native T1 relaxation times were elevated in HFmrEF (1027 ± 40 ms) and HFrEF (1033 ± 54 ms) compared to healthy controls (972 ± 31 ms) and HFpEF (985 ± 32 ms). T2 relaxation times were elevated in HFmrEF (55.4 ± 3.4 ms) and HFrEF (56.0 ± 6.0 ms) compared to healthy controls (50.6 ± 2.1 ms). Differences in ECV did not reach statistical significance. HFmrEF differs from healthy controls and shares similarities with HFrEF in cardiac MRI parameters of fibrosis and inflammation.

17.
Sci Rep ; 9(1): 16478, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712641

RESUMO

Heart failure (HF) is associated with progressive ventricular remodeling and impaired contraction that affects distinctly various regions of the myocardium. Our study applied cardiac magnetic resonance (CMR) feature tracking (FT) to assess comparatively myocardial strain at 3 distinct levels: subendocardial (Endo-), mid (Myo-) and subepicardial (Epi-) myocardium across an extended spectrum of patients with HF. 59 patients with HF, divided into 3 subgroups as follows: preserved ejection fraction (HFpEF, N = 18), HF with mid-range ejection fraction (HFmrEF, N = 21), HF with reduced ejection fraction (HFrEF, N = 20) and a group of age- gender- matched volunteers (N = 17) were included. Using CMR FT we assessed systolic longitudinal and circumferential strain and strain-rate at Endo-, Myo- and Epi- levels. Strain values were the highest in the Endo- layer and progressively lower in the Myo- and Epi- layers respectively, this gradient was present in all the patients groups analyzed but decreased progressively in HFmrEF and further on in HFrEF groups. GLS decreased with the severity of the disease in all 3 layers: Normal > HFpEF > HFmrEF > HFrEF (Endo-: -23.0 ± 3.5 > -20.0 ± 3.3 > -16.4 ± 2.2 > -11.0 ± 3.2, p < 0.001, Myo-: -20.7 ± 2.4 > -17.5.0 ± 2.6 > -14.5 ± 2.1 > -9.6 ± 2.7, p < 0.001; Epi-: -15.7 ± 1.9 > -12.2 ± 2.1 > -10.6 ± 2.3 > -7.7 ± 2.3, p < 0.001). In contrast, GCS was not different between the Normal and HFpEF (Endo-: -34.5 ± 6.2 vs -33.9 ± 5.7, p = 0.51; Myo-: -21.9 ± 3.8 vs -21.3 ± 2.2, p = 0.39, Epi-: -11.4 ± 2.0 vs -10.9 ± 2.3, p = 0.54) but was, as well, markedly lower in the systolic heart failure groups: Normal > HFmrEF > HFrEF (Endo-: -34.5 ± 6.2 > -20.0 ± 4.2 > 12.3 ± 4.2, p < 0.001; Myo-: -21.9 ± 3.8 > -13.0 ± 3.4 > -8.0 ± 2.7. p < 0.001; Epi-: -11.4 ± 2.0 > -7.9 ± 2.3 > -4.5 ± 1.9. p < 0.001). CMR feature tracking multilayer strain assessment identifies large range differences between distinct myocardial regions. Our data emphasizes the importance of sub-endocardial myocardium for cardiac contraction and thus, its predilect role in imaging detection of functional impairment. CMR feature tracking offers a convenient, readily available, platform to evaluate myocardial contraction with excellent spatial resolution, rendering further details about discrete areas of the myocardium. Using this technique across distinct groups of patients with heart failure (HF), we demonstrate that subendocardial regions of the myocardium exhibit much higher strain values than mid-myocardium or subepicardial and are more sensitive to detect contractile impairment. We also show comparatively higher values of circumferential strain compared with longitudinal and a higher sensitivity to detect contractile impairment. A newly characterized group of patients, HF with mid-range ejection fraction (EF), shows similar traits of decompensation but has relatively higher strain values as patients with HF with reduced EF.


Assuntos
Insuficiência Cardíaca/classificação , Insuficiência Cardíaca/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Volume Sistólico , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
19.
Med Eng Phys ; 74: 65-72, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611179

RESUMO

INTRODUCTION: Evaluations of left ventricular systolic function based on ejection fraction (EF) alone are unable to recognize impaired myocardial performance in some dysfunctional states, and strain parameters are often invoked for an improved description of cardiac contraction. A comprehensive framework integrating deformation measures with volumetric changes is therefore necessary. METHODS: This study presents a general mathematical background that confirms and generalizes a previously proposed framework relating volumetric changes and strain values. The model is then validated with 5450 data samples made of LV volume, global longitudinal strain (GLS) and global circumferential strain (GCS) from 109 heterogeneous subjects who underwent cardiac magnetic resonance imaging. The GCS was measured by either three short-axis slices or 3D LV geometry reconstructed from 3 long-axis slices. RESULTS: Results demonstrated the reliability of the relationship EF = 1 - (GLS + 1)(GCS + 1)2. Accuracy is higher (correlation coefficient r = 0.997) when GCS is obtained by 3D deformation, although it remains high (r = 0.98) when GCS is measured from short-axis slices. However, the latter may underestimate (about 10% in relative terms) the circumferential deformation due to through-plane motion. CONCLUSIONS: The accuracy of this relationship permits a unitary description of LV systolic function in terms of both EF and global strain values by its position on the strain plane (GLS, GCS). This also allows to monitor pathologic or healing changes, as a consequence of exercise, drugs, surgery or other therapeutic options, as trajectories on that plane.


Assuntos
Ventrículos do Coração , Estresse Mecânico , Função Ventricular , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Modelos Cardiovasculares
20.
J Clin Med ; 8(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509951

RESUMO

In this study, we used a single commercially available software solution to assess global longitudinal (GLS) and global circumferential strain (GCS) using cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) feature tracking (FT). We compared agreement and reproducibility between these two methods and the reference standard, CMR tagging (TAG). Twenty-seven patients with severe aortic stenosis underwent CMR and cardiac CT examinations. FT analysis was performed using Medis suite version 3.0 (Leiden, The Netherlands) software. Segment (Medviso) software was used for GCS assessment from tagged images. There was a trend towards the underestimation of GLS by CT-FT when compared to CMR-FT (19.4 ± 5.04 vs. 22.40 ± 5.69, respectively; p = 0.065). GCS values between TAG, CT-FT, and CMR-FT were similar (p = 0.233). CMR-FT and CT-FT correlated closely for GLS (r = 0.686, p < 0.001) and GCS (r = 0.707, p < 0.001), while both of these methods correlated moderately with TAG for GCS (r = 0.479, p < 0.001 for CMR-FT vs. TAG; r = 0.548 for CT-FT vs. TAG). Intraobserver and interobserver agreement was excellent in all techniques. Our findings show that, in elderly patients with severe aortic stenosis (AS), the FT algorithm performs equally well in CMR and cardiac CT datasets for the assessment of GLS and GCS, both in terms of reproducibility and agreement with the gold standard, TAG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...