Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(27): 16680-16686, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766583

RESUMO

The ligand field (LF) of transition metal ions is a crucial factor in realizing the mechanism of novel physical and chemical properties. However, the low-crystallinity state, including the amorphous state, precludes the clarification of the electronic structural relationship of transition metal ions using crystallographic techniques, ultraviolet and infrared optical methods, and magnetometry. Here, we demonstrate that soft X-ray 2p → 3d core-level absorption spectroscopy (L2,3-edge XAS) systematically revealed the local 3d electronic states, including in the LF, of nitrogen-coordinated transition-metal ions for low-crystallinity cyanide-bridged metal-organic frameworks (MOFs) M[Ni(CN)4] (MNi; M = Mn, Fe, Co, Ni) and Ni[Pd(CN)4] (NiPd). In NiNi and NiPd, N-coordinated Ni ions with square-planar symmetry exhibit strong orbital hybridization and ligand-to-metal charge transfer effects. In MnNi, FeNi, and CoNi, the correlation between the crystalline electric field splitting in the LF and the transition metal-nitrogen bonding length is revealed using the multiplet LF theory. Regardless of the different local symmetries, our results indicate that L2,3-edge XAS is a powerful tool for gaining element-specific knowledge about the transition-metal ion characterizing the functionality of low-crystallinity MOFs and will be the foundation for an attractive platform, such as adsorption/desorption materials.

2.
Adv Mater ; 34(20): e2200610, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312103

RESUMO

Antiferromagnetic spintronics is an emerging field of non-volatile data storage and information processing. The zero net magnetization and zero stray fields of antiferromagnetic materials eliminate interference between neighbor units, leading to high-density memory integrations. However, this invisible magnetic character at the same time also poses a great challenge in controlling and detecting magnetic states in antiferromagnets. Here, two antiferromagnetic spin states close in energy in strained BiFeO3 thin films at room temperature are discovered. It can be reversibly switched between these two non-volatile antiferromagnetic states by a moderate magnetic field and a non-contact optical approach. Importantly, the conductivity of the areas with each antiferromagnetic textures is drastically different. It is conclusively demonstrated the capability of optical writing and electrical reading of these newly discovered bistable antiferromagnetic states in the BiFeO3 thin films.

3.
Inorg Chem ; 60(9): 6298-6305, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33848160

RESUMO

B-site Os-doped quadruple perovskite oxides LaCu3Fe4-xOsxO12 (x = 1 and 2) were prepared under high-pressure and high-temperature conditions. Although parent compound LaCu3Fe4O12 experiences Cu-Fe intermetallic charge transfer that changes the Cu3+/Fe3+ charge combination to Cu2+/Fe3.75+ at 393 K, in the Os-doped samples, the Cu and Fe charge states are found to be constant 2+ and 3+, respectively, indicating the complete suppression of charge transfer. Correspondingly, Os6+ and mixed Os4.5+ valence states are determined by X-ray absorption spectroscopy for x = 1 and x = 2 compositions, respectively. The x = 1 sample crystallizes in an Fe/Os disordered structure with the Im3̅ space group. It experiences a spin-glass transition around 480 K. With further Os substitution up to x = 2, the crystal symmetry changes to Pn3̅, where Fe and Os are orderly distributed in a rocksalt-type fashion at the B site. Moreover, this composition shows a long-range Cu2+(↑)Fe3+(↑)Os4.5+(↓) ferrimagnetic ordering near 520 K. This work provides a rare example for 5d substitution-suppressed intermetallic charge transfer as well as induced structural and magnetic phase transitions with high spin ordering temperature.

4.
Nanoscale ; 12(5): 3284-3291, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31971196

RESUMO

The employment of flexible muscovite substrates has given us the feasibility of applying strain to heterostructures dynamically by mechanical bending. In this study, this novel approach is utilized to investigate strain effects on the exchange coupling in ferromagnetic Co and anti-ferromagnetic CoO (Co/CoO) bilayers. Two different Co/CoO bilayer heterostructures were grown on muscovite substrates by oxide molecular beam epitaxy, with the CoO layer being purely (111)- and (100)-oriented. The strain-dependent exchange coupling effect can only be observed on Co/CoO(100)/mica but not on Co/CoO(111)/mica. The origin of this phenomenon is attributed to the anisotropic spin re-orientation induced by mechanical bending. The strain-dependent magnetic anisotropy of the bilayers determined by anisotropic magnetoresistance measurements confirms this conjecture. This study elucidates the fundamental understanding of how magnetic exchange coupling can be tuned by externally applied strain via mechanical bending and, hence, provides a novel approach for implementing flexible spintronic devices.

5.
Phys Rev Lett ; 123(3): 036404, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386467

RESUMO

We have probed the crystalline electric-field ground states of pure |J=7/2,J_{z}=±5/2⟩ as well as the anisotropic c-f hybridization in both valence fluctuating systems α- and ß-YbAlB_{4} by linear polarization dependence of angle-resolved core level photoemission spectroscopy. Interestingly, the small but distinct difference between α- and ß-YbAlB_{4} was found in the polar angle dependence of linear dichroism, indicating the difference in the anisotropy of c-f hybridization, which may be a key to understanding a heavy Fermi liquid state in α-YbAlB_{4} and a quantum critical state in ß-YbAlB_{4}.

6.
Nat Mater ; 18(6): 580-587, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061484

RESUMO

Controlling ferroic orders (ferroelectricity, ferromagnetism and ferroelasticity) by optical methods is a significant challenge due to the large mismatch in energy scales between the order parameter coupling strengths and the incident photons. Here, we demonstrate an approach to manipulate multiple ferroic orders in an epitaxial mixed-phase BiFeO3 thin film at ambient temperature via laser illumination. Phase-field simulations indicate that a light-driven flexoelectric effect allows the targeted formation of ordered domains. We also achieved precise sequential laser writing and erasure of different domain patterns, which demonstrates a deterministic optical control of multiferroicity at room temperature. As ferroic orders directly influence susceptibility and conductivity in complex materials, our results not only shed light on the optical control of multiple functionalities, but also suggest possible developments for optoelectronics and related applications.

7.
Sci Rep ; 7(1): 3656, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623333

RESUMO

The pressure-response of the Co-O bond lengths and the spin state of Co ions in a hybrid 3d-5d solid-state oxide Sr2Co0.5Ir0.5O4 with a layered K2NiF4-type structure was studied by using hard X-ray absorption and emission spectroscopies. The Co-K and the Ir-L 3 X-ray absorption spectra demonstrate that the Ir5+ and the Co3+ valence states at ambient conditions are not affected by pressure. The Co Kß emission spectra, on the other hand, revealed a gradual spin state transition of Co3+ ions from a high-spin (S = 2) state at ambient pressure to a complete low-spin state (S = 0) at 40 GPa without crossing the intermediate spin state (S = 1). This can be well understood from our calculated phase diagram in which we consider the energies of the low spin, intermediate spin and high spin states of Co3+ ions as a function of the anisotropic distortion of the octahedral local coordination in the layered oxide. We infer that a short in-plane Co-O bond length (<1.90 Å) as well as a very large ratio of Co-Oapex/Co-Oin-plane is needed to stabilize the IS Co3+, a situation which is rarely met in reality.

8.
Sci Rep ; 5: 17937, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658647

RESUMO

Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4Sn6 is a strongly correlated material with non-trivial topology.

9.
Chemistry ; 21(21): 7938-43, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25876532

RESUMO

Through a solid-state reaction, a practically phase pure powder of Ba3 V2 S4 O3 was obtained. The crystal structure was confirmed by X-ray single-crystal and synchrotron X-ray powder diffraction (P63 , a=10.1620(2), c=5.93212(1) Å). X-ray absorption spectroscopy, in conjunction with multiplet calculations, clearly describes the vanadium in charge-disproportionated V(III) S6 and V(V) SO3 coordinations. The compound is shown to be a strongly correlated Mott insulator, which contradicts previous predictions. Magnetic and specific heat measurements suggest dominant antiferromagnetic spin interactions concomitant with a weak residual ferromagnetic component, and that intrinsic geometric frustration prevents long-range order from evolving.

10.
Proc Natl Acad Sci U S A ; 112(8): 2384-8, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675488

RESUMO

The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions of the strongly correlated materials CeRh1-xIrxIn5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.

11.
J Am Chem Soc ; 136(4): 1514-9, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24410074

RESUMO

The complex metal oxide SrCo0.5Ru0.5O(3-δ) possesses a slightly distorted perovskite crystal structure. Its insulating nature infers a well-defined charge distribution, and the six-fold coordinated transition metals have the oxidation states +5 for ruthenium and +3 for cobalt as observed by X-ray spectroscopy. We have discovered that Co(3+) ion is purely high-spin at room temperature, which is unique for a Co(3+) in an octahedral oxygen surrounding. We attribute this to the crystal field interaction being weaker than the Hund's-rule exchange due to a relatively large mean Co-O distances of 1.98(2) Å, as obtained by EXAFS and X-ray diffraction experiments. A gradual high-to-low spin state transition is completed by applying high hydrostatic pressure of up to 40 GPa. Across this spin state transition, the Co Kß emission spectra can be fully explained by a weighted sum of the high-spin and low-spin spectra. Thereby is the much debated intermediate spin state of Co(3+) absent in this material. These results allow us to draw an energy diagram depicting relative stabilities of the high-, intermediate-, and low-spin states as functions of the metal-oxygen bond length for a Co(3+) ion in an octahedral coordination.

12.
Plant Cell Physiol ; 47(8): 1081-94, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16816409

RESUMO

Temperature is a primary environmental cue for seed germination of many weeds and vegetables. To investigate the mechanism of germination regulation by temperature, we selected five high temperature (thermoinhibition)-resistant germination mutants (TRW lines) from 20,000 T-DNA insertion lines of Arabidopsis. Segregation analyses indicated that each of the five lines had single locus recessive mutations. The seeds of TRW134-15 and TRW187 showed reduced sensitivity to ABA and also to the gibberrellin biosynthesis inhibitor, paclobutrazol. Genetic and nucleotide sequencing analyses indicated that TRW187 is a new allele of abi3 (abi3-14). TRW71-1 exhibited a maternal effect for both thermoinhibition-resistant and transparent testa phenotypes, and genetic analysis revealed that the mutation was allelic to tt7 (tt7-4 sib). Interestingly, the seeds of reduced dormancy mutants rdo1, rdo2, rdo3 and rdo4 were also thermoinhibition tolerant, and all the TRW seeds showed reduced dormancy. Like rdo3, TRW13-1 had shorter siliques and slightly shorter stems than the wild type. The mutation of TRW13-1 was mapped to the bottom arm of chromosome 1 where rdo3 has also been mapped, but the two mutants are not allelic. We designated TRW13-1 as thermoinhibition-resistant germination 1 (trg1). We also mapped the ABA-insensitive mutation of TRW134-15 to the bottom arm of chromosome 5 and named it trg2. These results show that both embryo/endosperm and maternal factors contribute to germination inhibition at supraoptimal temperatures in Arabidopsis. In addition, we confirm the role of ABA in thermoinhibition of seed germination and a link between seed physiological dormancy and response to high temperature.


Assuntos
Arabidopsis/fisiologia , Germinação/fisiologia , Sementes/fisiologia , Temperatura , Ácido Abscísico/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Sequência de Bases , Giberelinas/fisiologia , Dados de Sequência Molecular , Mutação , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...