Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 26: 100962, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33763604

RESUMO

Quantum dots (QDs) are nanocrystals of semiconducting material possessing quantum mechanical characteristics with capability to get conjugated with drug moieties. The particle size of QDs varies from 2 to 10 nm and can radiate a wide range of colours depending upon their size. Their wide and diverse usage of QDs across the world is due to their adaptable properties like large quantum yield, photostability, and adjustable emission spectrum. QDs are nanomaterials with inherent electrical characteristics that can be used as drug carrier vehicle and as a diagnostic in the field of nanomedicine. Scientists from various fields are aggressively working for the development of single platform that can sense, can produce a microscopic image and even be used to deliver a therapeutic agent. QDs are the fluorescent nano dots with which the possibilities of the drug delivery to a targeted site and its biomedical imaging can be explored. This review is mainly focused on the different process of synthesis of QDs, their application especially in the areas of malignancies and as a theranostic tool. The attempt is to consolidate the data available for the use of QDs in the biomedical applications.

2.
J Pharm Bioallied Sci ; 2(4): 325-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21180465

RESUMO

OBJECTIVE: Fast dissolving drug delivery system offers a solution for those patients having difficulty in swallowing tablets/capsules etc. Verapamil is a calcium channel blocker used as an antianginal, antiarrhythmic, and antihypertensive agent with extensive first pass metabolism which results in less bioavailability. This work investigated the possibility of developing verapamil fast dissolving strips allowing fast, reproducible drug dissolution in the oral cavity; thus bypassing first pass metabolism. MATERIALS AND METHODS: The fast dissolving strips were prepared by solvent casting technique with the help of HPMC E6 and maltodextrin. The strips were evaluated for drug content uniformity, film thickness, folding endurance, in vitro disintegration time, in vitro dissolution studies, surface pH study, and palatability study. RESULTS: Official criteria for evaluation parameters were fulfilled by all formulations. Disintegration time showed by formulations was found to be in range of 20.4-28.6 sec. Based on the evaluation parameters, the formulation containing 2% HPMC E6 and 3.5% maltodextrin showed optimum performance against other formulations. CONCLUSION: It was concluded that the fast dissolving strips of verapamil can be made by solvent casting technique with enhanced dissolution rate, taste masking, and hence better patient compliance and effective therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...