Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neurochem ; 168(6): 1168-1170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396216

RESUMO

Dr. Brian Collier, the former Editor-in-Chief of the Journal of Neurochemistry from 1996 to 2006, passed away January 4th, 2024. Brian's illustrious career spanned the fields of neurochemistry and pharmacology. He published his findings on mechanisms of acetylcholine synthesis and storage in the Journal of Neurochemistry, and his contributions remain landmarks in neurochemical research.


Assuntos
Neuroquímica , História do Século XX , História do Século XXI , Neuroquímica/história , Humanos , Publicações Periódicas como Assunto/história
2.
Front Neurol ; 13: 852003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614915

RESUMO

α-Synuclein (asyn) is a key pathogenetic factor in a group of neurodegenerative diseases generically known as synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Although the initial triggers of pathology and progression are unclear, multiple lines of evidence support therapeutic targeting of asyn in order to limit its prion-like misfolding. Here, we review recent pre-clinical and clinical work that offers promising treatment strategies to sequester, degrade, or silence asyn expression as a means to reduce the levels of seed or substrate. These diverse approaches include removal of aggregated asyn with passive or active immunization or by expression of vectorized antibodies, modulating kinetics of misfolding with small molecule anti-aggregants, lowering asyn gene expression by antisense oligonucleotides or inhibitory RNA, and pharmacological activation of asyn degradation pathways. We also discuss recent technological advances in combining low intensity focused ultrasound with intravenous microbubbles to transiently increase blood-brain barrier permeability for improved brain delivery and target engagement of these large molecule anti-asyn biologics.

3.
Brain Commun ; 3(4): fcab247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761222

RESUMO

The accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits. Importantly, a moderate 50% reduction in α-syn was sufficient to prevent the spread of α-syn pathology to distal brain regions. Our study combines behavioural, immunohistochemical and biochemical data that strongly support α-syn knockdown gene therapy for synucleinopathies.

4.
Front Aging Neurosci ; 13: 665348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393754

RESUMO

AIM: Population based studies indicate a positive association between type 2 diabetes (T2D) and Parkinson's disease (PD) where there is an increased risk of developing PD in patients with T2D. PD is characterized by the abnormal accumulation of intraneuronal aggregated α-synuclein (α-syn) in Lewy bodies, which negatively impact neuronal viability. α-syn is also expressed in both pancreatic islets and skeletal muscle, key players in glucose regulation. Therefore, we examined the functional role of α-syn in these tissues. METHODS: Using mice lacking, overexpressing or transiently injected with α-syn, effects on glucose and insulin tolerance and insulin secretion were determined, with further characterization of the effects on GLUT4 translocation using GLUT4myc myotubes. RESULTS: Mice genetically ablated for α-syn became glucose intolerant and insulin resistant with hyperinsulinemia and reduced glucose-stimulated insulin secretion (GSIS). Mice overexpressing human α-syn are more insulin senstive and glucose tolerant compared to controls with increased GSIS. Injection of purified α-syn monomers also led to improved glucose tolerance and insulin sensitivity with hightened GSIS. α-syn monomer treatments increased surface GLUT4 levels in myotubes but without any significant change in Akt phosphorylation. The increase in cell surface GLUT4 was largely due to a large reduction in GLUT4 endocytosis, however, with a compensatory reduction in GLUT4 exocytosis. CONCLUSION: Cumulatively, this data suggests that α-syn modulates both pancreatic beta cell function and glucose transport in peripheral tissues, thereby playing a pivitol role in the maintenance of normal glucose homeostasis.

6.
Sci Total Environ ; 783: 147055, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088132

RESUMO

Environmental pollutants like microplastics are posing health concerns on aquatic animals and the ecosystem. Microplastic toxicity studies using Caenorhabditis elegans (C. elegans) as a model are evolving but methodologically hindered from obtaining statistically strong data sets, detecting toxicity effects based on microplastics uptake, and correlating physiological and behavioural effects at an individual-worm level. In this paper, we report a novel microfluidic electric egg-laying assay for phenotypical assessment of multiple worms in parallel. The effects of glucose and polystyrene microplastics at two concentrations on the worms' electric egg-laying, length, diameter, and length contraction during exposure to electric signal were studied. The device contained eight parallel worm-dwelling microchannels called electric traps, with equivalent electrical fields, in which the worms were electrically stimulated for egg deposition and fluorescently imaged for assessment of neuronal and microplastic uptake expression. A new bidirectional stimulation technique was developed, and the device design was optimized to achieve a testing efficiency of 91.25%. Exposure of worms to 100 mM glucose resulted in a significant reduction in their egg-laying and size. The effects of 1 µm polystyrene microparticles at concentrations of 100 and 1000 mg/L on the electric egg-laying behaviour, size, and neurodegeneration of N2 and NW1229 (expressing GFP pan-neuronally) worms were also studied. Of the two concentrations, 1000 mg/L caused severe egg-laying deficiency and growth retardation as well as neurodegeneration. Additionally, using single-worm level phenotyping, we noticed intra-population variability in microplastics uptake and correlation with the above physiological and behavioural phenotypes, which was hidden in the population-averaged results. Taken together, these results suggest the appropriateness of our microfluidic assay for toxicological studies and for assessing the phenotypical heterogeneity in response to microplastics.


Assuntos
Caenorhabditis elegans , Microplásticos , Animais , Ecossistema , Microfluídica , Plásticos/toxicidade
7.
J Am Soc Mass Spectrom ; 32(5): 1169-1179, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33784451

RESUMO

Both normal and pathological functions of α-synuclein (αSN), an abundant protein in the central and peripheral nervous system, have been linked to its interaction with membrane lipid bilayers. The ability to characterize structural transitions of αSN upon membrane complexation will clarify molecular mechanisms associated with αSN-linked pathologies, including Parkinson's disease (PD), multiple systems atrophy, and other synucleinopathies. In this work, time-resolved electrospray ionization hydrogen/deuterium exchange mass spectrometry (TRESI-HDX-MS) was employed to acquire a detailed picture of αSN's conformational transitions as it undergoes complexation with nanodisc membrane mimics with different headgroup charges (zwitterionic DMPC and negative POPG). Using this approach, αSN interactions with DMPC nanodiscs were shown to be rapid exchanging and to have little impact on the αSN conformational ensemble. Interactions with nanodiscs containing lipids known to promote amyloidogenesis (e.g., POPG), on the other hand, were observed to induce substantial and specific changes in the αSN conformational ensemble. Ultimately, we identify a region corresponding residues 19-28 and 45-57 of the αSN sequence that is uniquely impacted by interactions with "amyloidogenic" lipid membranes, supporting the existing "broken-helix" model for α-synuclein/membrane interactions, but do not detect a "helical extension" that is also thought to play a role in αSN aggregation.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Fosfolipídeos/química , alfa-Sinucleína/química , Cromatografia em Gel , Dimiristoilfosfatidilcolina/química , Humanos , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/química , Modelos Químicos , Nanoestruturas/química , Fosfatidilgliceróis/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray/métodos , alfa-Sinucleína/isolamento & purificação
8.
Lab Chip ; 21(5): 821-834, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33527103

RESUMO

In this paper, the novel effect of electric field (EF) on adult C. elegans egg-laying in a microchannel is discovered and correlated with neural and muscular activities. The quantitative effects of worm aging and EF strength, direction, and exposure duration on egg-laying are studied phenotypically using egg-count, body length, head movement, and transient neuronal activity readouts. Electric egg-laying rate increases significantly when worms face the anode and the response is EF-dependent, i.e. stronger (6 V cm-1) and longer EF (40 s) exposure result in a shorter egg laying response duration. Worm aging significantly deteriorates the electric egg-laying behaviour with an 88% decrease in the egg-count from day-1 to day-4 post young-adult stage. Fluorescent imaging of intracellular calcium dynamics in the main parts of the egg-laying neural circuit demonstrates the involvement and sensitivity of the serotonergic hermaphrodite specific neurons (HSNs), vulva muscles, and ventral cord neurons to the EF. HSN mutation also results in a reduced rate of electric egg-laying allowing the use of this technique for cellular screening and mapping of the neural basis of electrosensation in C. elegans. This novel assay can be parallelized and performed in a high-throughput manner for drug and gene screening applications.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Comportamento Animal , Proteínas de Caenorhabditis elegans/genética , Feminino , Mutação , Neurônios , Oviposição
12.
Micromachines (Basel) ; 11(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759767

RESUMO

In this paper, we report a novel microfluidic method to conduct a Caenorhabditis elegans electrotaxis movement assay and neuronal imaging on up to 16 worms in parallel. C. elegans is a model organism for neurodegenerative disease and movement disorders such as Parkinson's disease (PD), and for screening chemicals that alleviate protein aggregation, neuronal death, and movement impairment in PD. Electrotaxis of C. elegans in microfluidic channels has led to the development of neurobehavioral screening platforms, but enhancing the throughput of the electrotactic behavioral assay has remained a challenge. Our device consisted of a hierarchy of tree-like channels for worm loading into 16 parallel electrotaxis screening channels with equivalent electric fields. Tapered channels at the ends of electrotaxis channels were used for worm immobilization and fluorescent imaging of neurons. Parallel electrotaxis of worms was first validated against established single-worm electrotaxis phenotypes. Then, mutant screening was demonstrated using the NL5901 strain, carrying human α-synuclein in the muscle cells, by showing the associated electrotaxis defects in the average speed, body bend frequency (BBF), and electrotaxis time index (ETI). Moreover, chemical screening of a PD worm model was shown by exposing the BZ555 strain, expressing green fluorescence protein (GFP) in the dopaminergic neurons (DNs), to 6-hydroxydopamine neurotoxin. The neurotoxin-treated worms exhibited a reduction in electrotaxis swimming speed, BBF, ETI, and DNs fluorescence intensity. We envision our technique to be used widely in C. elegans-based movement disorder assays to accelerate behavioral and cellular phenotypic investigations.

13.
Nat Neurosci ; 23(1): 21-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792467

RESUMO

The clinical and pathological differences between synucleinopathies such as Parkinson's disease and multiple system atrophy have been postulated to stem from unique strains of α-synuclein aggregates, akin to what occurs in prion diseases. Here we demonstrate that inoculation of transgenic mice with different strains of recombinant or brain-derived α-synuclein aggregates produces clinically and pathologically distinct diseases. Strain-specific differences were observed in the signs of neurological illness, time to disease onset, morphology of cerebral α-synuclein deposits and the conformational properties of the induced aggregates. Moreover, different strains targeted distinct cellular populations and cell types within the brain, recapitulating the selective targeting observed among human synucleinopathies. Strain-specific clinical, pathological and biochemical differences were faithfully maintained after serial passaging, which implies that α-synuclein propagates via prion-like conformational templating. Thus, pathogenic α-synuclein exhibits key hallmarks of prion strains, which provides evidence that disease heterogeneity among the synucleinopathies is caused by distinct α-synuclein strains.


Assuntos
Encéfalo/patologia , Agregação Patológica de Proteínas , Sinucleinopatias , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Animais , Camundongos , Camundongos Transgênicos , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/toxicidade , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
14.
Integr Biol (Camb) ; 11(5): 186-207, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251339

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder associated with the loss of dopaminergic neurons (DNs) in the substantia nigra and the widespread accumulation of α-synuclein (α-syn) protein, leading to motor impairments and eventual cognitive dysfunction. In-vitro cell cultures and in-vivo animal models have provided the opportunity to investigate the PD pathological hallmarks and identify different therapeutic compounds. However, PD pathogenesis and causes are still not well understood, and effective inhibitory drugs for PD are yet to be discovered. Biologically simple but pathologically relevant disease models and advanced screening technologies are needed to reveal the mechanisms underpinning protein aggregation and PD progression. For instance, Caenorhabditis elegans (C. elegans) offers many advantages for fundamental PD neurobehavioral studies including a simple, well-mapped, and accessible neuronal system, genetic homology to humans, body transparency and amenability to genetic manipulation. Several transgenic worm strains that exhibit multiple PD-related phenotypes have been developed to perform neuronal and behavioral assays and drug screening. However, in conventional worm-based assays, the commonly used techniques are equipment-intensive, slow and low in throughput. Over the past two decades, microfluidics technology has contributed significantly to automation and control of C. elegans assays. In this review, we focus on C. elegans PD models and the recent advancements in microfluidic platforms used for manipulation, handling and neurobehavioral screening of these models. Moreover, we highlight the potential of C. elegans to elucidate the in-vivo mechanisms of neuron-to-neuron protein transfer that may underlie spreading Lewy pathology in PD, and its suitability for in-vitro studies. Given the advantages of C. elegans and microfluidics technology, their integration has the potential to facilitate the investigation of disease pathology and discovery of potential chemical leads for PD.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Microfluídica , Doença de Parkinson/fisiopatologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/fisiologia , Técnicas de Cultura de Células , Disfunção Cognitiva/metabolismo , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Desenho de Equipamento , Genótipo , Humanos , Dispositivos Lab-On-A-Chip , Teste de Materiais , Doença de Parkinson/metabolismo , Fenótipo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
15.
Mov Disord ; 33(10): 1567-1579, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30264465

RESUMO

BACKGROUND: The characteristic progression of Lewy pathology in Parkinson's disease likely involves intercellular exchange and the accumulation of misfolded α-synuclein amplified by a prion-like self-templating mechanism. Silencing of the α-synuclein gene could provide long-lasting disease-modifying benefits by reducing the requisite substrate for the spreading aggregation. OBJECTIVES: As a result of the poor penetration of viral vectors across the blood-brain barrier, gene therapy for central nervous system disorders requires direct injections into the affected brain regions, and invasiveness is further increased by the need for bilateral delivery to multiple brain regions. Here we test a noninvasive approach by combining low-intensity magnetic resonance-guided focused ultrasound and intravenous microbubbles that can transiently increase the access of brain impermeant therapeutic macromolecules to targeted brain regions. METHODS: Transgenic mice expressing human α-synuclein were subjected to magnetic resonance-guided focused ultrasound targeted to 4 brain regions (hippocampus, substantia nigra, olfactory bulb, and dorsal motor nucleus) in tandem with intravenous microbubbles and an adeno-associated virus serotype 9 vector bearing a short hairpin RNA sequence targeting the α-synuclein gene. RESULTS: One month following treatment, α-synuclein immunoreactivity was decreased in targeted brain regions, whereas other neuronal markers such as synaptophysin or tyrosine hydroxylase were unchanged, and cell death and glial activation remained at basal levels. CONCLUSIONS: These results demonstrate that magnetic resonance-guided focused ultrasound can effectively, noninvasively, and simultaneously deliver viral vectors targeting α-synuclein to multiple brain areas. Importantly, this approach may be useful to alter the progression of Lewy pathology along selected neuronal pathways, particularly as prodromal PD markers improve early diagnoses. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/diagnóstico por imagem , Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , Imageamento por Ressonância Magnética/métodos , Ultrassonografia , alfa-Sinucleína/genética , Animais , Apoptose/genética , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Morte Celular/genética , Dependovirus/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sinaptofisina/metabolismo , Fatores de Tempo , Transdução Genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
16.
Front Neurosci ; 12: 344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875627

RESUMO

In Parkinson's disease, intracellular α-synuclein (α-syn) inclusions form in neurons and are referred to as Lewy bodies. These aggregates spread through the brain following a specific pattern leading to the hypothesis that neuron-to-neuron transfer is critical for the propagation of Lewy body pathology. Here we review recent studies employing pre-formed fibrils generated from recombinant α-syn to evaluate the uptake, trafficking, and release of α-syn fibrils. We outline methods of internalization as well as cell surface receptors that have been described in the literature as regulating α-syn fibril uptake. Pharmacological and genetic studies indicate endocytosis is the primary method of α-syn internalization. Once α-syn fibrils have crossed the plasma membrane they are typically trafficked through the endo-lysosomal system with autophagy acting as the dominant method of α-syn clearance. Interestingly, both chaperone-mediated autophagy and macroautophagy have been implicated in the degradation of α-syn, although it remains unclear which system is chiefly responsible for the removal of α-syn fibrils. The major hallmark of α-syn spreading is the templating of misfolded properties onto healthy protein resulting in a conformational change; we summarize the evidence indicating misfolded α-syn can seed endogenous α-syn to form new aggregates. Finally, recent studies demonstrate that cells release misfolded and aggregated α-syn and that these processes may involve different chaperones. Nonetheless, the exact mechanism for the release of fibrillar α-syn remains unclear. This review highlights what is known, and what requires further clarification, regarding each step of α-syn transmission.

17.
Nat Commun ; 9(1): 712, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459792

RESUMO

Alpha-synuclein is known to bind to small unilamellar vesicles (SUVs) via its N terminus, which forms an amphipathic alpha-helix upon membrane interaction. Here we show that calcium binds to the C terminus of alpha-synuclein, therewith increasing its lipid-binding capacity. Using CEST-NMR, we reveal that alpha-synuclein interacts with isolated synaptic vesicles with two regions, the N terminus, already known from studies on SUVs, and additionally via its C terminus, which is regulated by the binding of calcium. Indeed, dSTORM on synaptosomes shows that calcium mediates the localization of alpha-synuclein at the pre-synaptic terminal, and an imbalance in calcium or alpha-synuclein can cause synaptic vesicle clustering, as seen ex vivo and in vitro. This study provides a new view on the binding of alpha-synuclein to synaptic vesicles, which might also affect our understanding of synucleinopathies.


Assuntos
Cálcio/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Técnicas In Vitro , Metabolismo dos Lipídeos , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Terminações Pré-Sinápticas/metabolismo , Agregados Proteicos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo , alfa-Sinucleína/ultraestrutura
18.
Trends Neurosci ; 39(11): 750-762, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27776749

RESUMO

In recent years, a new generation of animal models of Parkinson's disease (PD) based on ectopic expression, overexpression, or intracerebral injection of the protein α-synuclein have emerged. Critically, these models develop inclusions of aggregated α-synuclein and/or α-synuclein-mediated neuronal loss replicating the defining pathological hallmarks of PD and driving significant advances in the understanding of the pathogenic mechanisms underpinning PD. Here, we provide a comprehensive review of this new generation of animal models of PD, ranging from invertebrate to rodent to nonhuman primate. We focus on their strengths and limitations with respect to their highly anticipated contribution to the further understanding of α-synuclein pathobiology and the future testing of novel disease-modifying therapeutics.


Assuntos
Descoberta de Drogas , Neurônios/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Doença de Parkinson/genética , Príons/genética , alfa-Sinucleína/genética
19.
Mol Cell Oncol ; 3(2): e1046579, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308585

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control.

20.
J Biol Chem ; 291(9): 4374-85, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26719332

RESUMO

Although trace levels of phosphorylated α-synuclein (α-syn) are detectable in normal brains, nearly all α-syn accumulated within Lewy bodies in Parkinson disease brains is phosphorylated on serine 129 (Ser-129). The role of the phosphoserine residue and its effects on α-syn structure, function, and intracellular accumulation are poorly understood. Here, co-expression of α-syn and polo-like kinase 2 (PLK2), a kinase that targets Ser-129, was used to generate phosphorylated α-syn for biophysical and biological characterization. Misfolding and fibril formation of phosphorylated α-syn isoforms were detected earlier, although the fibrils remained phosphatase- and protease-sensitive. Membrane binding of α-syn monomers was differentially affected by phosphorylation depending on the Parkinson disease-linked mutation. WT α-syn binding to presynaptic membranes was not affected by phosphorylation, whereas A30P α-syn binding was greatly increased, and A53T α-syn was slightly lower, implicating distal effects of the carboxyl- on amino-terminal membrane binding. Endocytic vesicle-mediated internalization of pre-formed fibrils into non-neuronal cells and dopaminergic neurons matched the efficacy of α-syn membrane binding. Finally, the disruption of internalized vesicle membranes was enhanced by the phosphorylated α-syn isoforms, a potential means for misfolded extracellular or lumenal α-syn to access cytosolic α-syn. Our results suggest that the threshold for vesicle permeabilization is evident even at low levels of α-syn internalization and are relevant to therapeutic strategies to reduce intercellular propagation of α-syn misfolding.


Assuntos
Endocitose , Doença de Parkinson/genética , Agregação Patológica de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Sinaptossomos/metabolismo , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Linhagem Celular , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Mutação , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Sinaptossomos/patologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...