Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 21(24): 10157-10164, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34846155

RESUMO

In this study, we use differential phase contrast images obtained by scanning transmission electron microscopy combined with computer simulations to map the atomic electrostatic fields of MoS2 monolayers and investigate the effect of sulfur monovacancies and divancancies on the atomic electric field and total charge distribution. A significant redistribution of the electric field in the regions containing defects is observed, with a progressive decrease in the strength of the projected electric field for each sulfur atom removed from its position. The electric field strength at the sulfur monovacancy sites is reduced by approximately 50% and nearly vanishes at the divacancy sites, where it drops to around 15% of the original value, demonstrating the tendency of these defects to attract positively charged ions or particles. In addition, the absence of the sulfur atoms leads to an inversion in the polarity of the total charge distribution in these regions.

3.
Nat Commun ; 11(1): 3203, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581271

RESUMO

Electrostatic gating of two-dimensional (2D) materials with ionic liquids (ILs), leading to the accumulation of high surface charge carrier densities, has been often exploited in 2D devices. However, the intrinsic liquid nature of ILs, their sensitivity to humidity, and the stress induced in frozen liquids inhibit ILs from constituting an ideal platform for electrostatic gating. Here we report a lithium-ion solid electrolyte substrate, demonstrating its application in high-performance back-gated n-type MoS2 and p-type WSe2 transistors with sub-threshold values approaching the ideal limit of 60 mV/dec and complementary inverter amplifier gain of 34, the highest among comparable amplifiers. Remarkably, these outstanding values were obtained under 1 V power supply. Microscopic studies of the transistor channel using microwave impedance microscopy reveal a homogeneous channel formation, indicative of a smooth interface between the TMD and underlying electrolytic substrate. These results establish lithium-ion substrates as a promising alternative to ILs for advanced thin-film devices.

4.
Chem Soc Rev ; 47(16): 6370-6387, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30065980

RESUMO

Silicene, the ultimate scaling of a silicon atomic sheet in a buckled honeycomb lattice, represents a monoelemental class of two-dimensional (2D) materials similar to graphene but with unique potential for a host of exotic electronic properties. Nonetheless, there is a lack of experimental studies largely due to the interplay between material degradation and process portability issues. This review highlights the state-of-the-art experimental progress and future opportunities in the synthesis, characterization, stabilization, processing and experimental device examples of monolayer silicene and its derivatives. The electrostatic characteristics of the Ag-removal silicene field-effect transistor exhibit ambipolar charge transport, corroborating with theoretical predictions on Dirac fermions and Dirac cone in the band structure. The electronic structure of silicene is expected to be sensitive to substrate interaction, surface chemistry, and spin-orbit coupling, holding great promise for a variety of novel applications, such as topological bits, quantum sensing, and energy devices. Moreover, the unique allotropic affinity of silicene with single-crystalline bulk silicon suggests a more direct path for the integration with or revolution to ubiquitous semiconductor technology. Both the materials and process aspects of silicene research also provide transferable knowledge to other Xenes like stanene, germanene, phosphorene, and so forth.

5.
J Phys Condens Matter ; 29(18): 185302, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28266927

RESUMO

We report the results of an investigation of ambipolar transport in a quantum well of 15 nm width in an undoped GaAs/AlGaAs structure, which was populated either by electrons or holes using positive or negative gate voltage V tg, respectively. More attention was focussed on the low concentration of electrons n and holes p near the metal-insulator transition (MIT). It is shown that the electron mobility [Formula: see text] increases almost linearly with increase of n and is independent of temperature T in the interval 0.3 K-1.4 K, while the hole mobility [Formula: see text] depends non-monotonically on p and T. This difference is explained on the basis of the different effective masses of electrons and holes in GaAs. Intriguingly, we observe that at low p the source-drain current (I SD)-voltage (V) characteristics, which become non-linear beyond a certain I SD, exhibit a re-entrant linear regime at even higher I SD. We find, remarkably, that the departure and reappearance of linear behaviour are not due to non-linear response of the system, but due to an intrinsic mechanism by which there is a reduction in the net number of mobile carriers. This effect is interpreted as evidence of inhomogeneity of the conductive 2D layer in the vicinity of MIT and trapping of holes in 'dead ends' of insulating islands. Our results provide insights into transport mechanisms as well as the spatial structure of the 2D conducting medium near the 2D MIT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...