Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(46): e2306330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37737448

RESUMO

Due to its inversion-broken triple helix structure and the nature of Weyl semiconductor, 2D Tellurene (2D Te) is promising to possess a strong nonlinear optical response in the infrared region, which is rarely reported in 2D materials. Here, a giant nonlinear infrared response induced by large Berry curvature dipole (BCD) is demonstrated in the Weyl semiconductor 2D Te. Ultrahigh second-harmonic generation response is acquired from 2D Te with a large second-order nonlinear optical susceptibility (χ(2) ), which is up to 23.3 times higher than that of monolayer MoS2 in the range of 700-1500 nm. Notably, distinct from other 2D nonlinear semiconductors, χ(2) of 2D Te increases extraordinarily with increasing wavelength and reaches up to 5.58 nm V-1 at ≈2300 nm, which is the best infrared performance among the reported 2D nonlinear materials. Large χ(2) of 2D Te also enables the high-intensity sum-frequency generation with an ultralow continuous-wave (CW) pump power. Theoretical calculations reveal that the exceptional performance is attributed to the presence of large BCD located at the Weyl points of 2D Te. These results unravel a new linkage between Weyl semiconductor and strong optical nonlinear responses, rendering 2D Te a competitive candidate for highly efficient nonlinear 2D semiconductors in the infrared region.

2.
Nanomicro Lett ; 15(1): 217, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768413

RESUMO

The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.

3.
iScience ; 26(5): 106567, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37124416

RESUMO

2D ferromagnets have garnered considerable attention for their potential applications in spintronics, magnonics, and spin-orbitronics. Chromium tellurides (CrxTey), in particular, have drawn interest due to their exceptional magnetic properties and diverse range of chemical stoichiometries, attributed to the phenomenon of chromium self-intercalation. To provide an in-depth understanding of this complex material class, this review first explains the origin of 2D magnetism using two well-known 2D ferromagnets, CrI3 and Fe3GeTe2, and compares the structures of CrTe2, Cr5Te8, Cr2Te3, and CrTe to clarify the self-intercalation phenomenon. In addition, it summarizes the growth conditions of CrxTey using the chemical vapor deposition approach as well as commonly practiced characterization techniques for 2D ferromagnetism. This review also compares ferromagnetic properties while analyzing how Cr intercalants affect the magnetic. Finally, it suggests that more attention should be focused on this material system to unlock its full practical and academic potential, and proposes directions for future research.

4.
Nat Mater ; 22(4): 450-458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35739274

RESUMO

Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.

6.
Nature ; 609(7925): 46-51, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045238

RESUMO

Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.

7.
J Am Chem Soc ; 143(43): 18103-18113, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34606266

RESUMO

Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for further study. Here, we report the implementation of supervised machine learning (ML) for the chemical vapor deposition (CVD) synthesis of high-quality quasi-1D few-layered WTe2 NRs. Feature importance analysis indicates that H2 gas flow rate has a profound influence on the formation of WTe2, and the source ratio governs the sample morphology. Notably, the growth mechanism of 1T' few-layered WTe2 NRs is further proposed, which provides new insights for the growth of intriguing 2D and 1D tellurides and may inspire the growth strategies for other 1D nanostructures. Our findings suggest the effectiveness and capability of ML in guiding the synthesis of 1D nanostructures, opening up new opportunities for intelligent materials development.

8.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602804

RESUMO

Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Técnicas Biossensoriais/métodos , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transdução de Sinais
9.
ACS Nano ; 14(11): 14761-14768, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32960048

RESUMO

Knowing the correlation of reaction parameters in the preparation process of carbon dots (CDs) is essential for optimizing the synthesis strategy, exploring exotic properties, and exploiting potential applications. However, the integrated screening experimental data on the synthesis of CDs are huge and noisy. Machine learning (ML) has recently been successfully used for the screening of high-performance materials. Here, we demonstrate how ML-based techniques can offer insight into the successful prediction, optimization, and acceleration of CDs' synthesis process. A regression ML model on hydrothermal-synthesized CDs is established capable of revealing the relationship between various synthesis parameters and experimental outcomes as well as enhancing the process-related properties such as the fluorescent quantum yield (QY). CDs exhibiting a strong green emission with QY up to 39.3% are obtained through the combined ML guidance and experimental verification. The mass of precursors and the volume of alkaline catalysts are identified as the most important features in the synthesis of high-QY CDs by the trained ML model. The CDs are applied as an ultrasensitive fluorescence probe for monitoring the Fe3+ ion because of their superior optical behaviors. The probe exhibits the linear response to the Fe3+ ion with a wide concentration range (0-150 µM), and its detection limit is 0.039 µM. Our findings demonstrate the great capability of ML to guide the synthesis of high-quality CDs, accelerating the development of intelligent material.

10.
ACS Nano ; 14(1): 595-602, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31891248

RESUMO

A carbon microtube aerogel (CMA) with hydrophobicity, strong adsorption capacity, and superb recyclability was obtained by a feasible approach with economical raw material, such as kapok fiber. The CMA possesses a great adsorption capacity of 78-348 times its weight. Attributed to its outstanding thermal stability and excellent mechanical properties, the CMA can be used for many cycles of distillation, squeezing, and combustion without degradation, which suggests a potential practical application in oil-water separation. In addition, the adsorption capacity still retained 98% by distillation, 97% by squeezing, and 90% by combustion after 10 cycles. Therefore, the obtained CMA has a broad prospect as an economical, efficient, and environmentally friendly adsorbent.

11.
ACS Nano ; 13(10): 10929-10938, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31550117

RESUMO

PtSe2, a layered two-dimensional transition-metal dichalcogenide (TMD), has drawn intensive attention owing to its layer-dependent band structure, high air stability, and spin-layer locking effect which can be used in various applications for next-generation optoelectronic and electronic devices or catalysis applications. However, synthesis of PtSe2 is highly challenging due to the low chemical reactivity of Pt sources. Here, we report the chemical vapor deposition of monolayer PtSe2 single crystals on MoSe2. The periodic Moiré patterns from the vertically stacked heterostructure (PtSe2/MoSe2) are clearly identified via annular dark-field scanning transmission electron microscopy. First-principles calculations show a type II band alignment and reveal interface states originating from the strong-weak interlayer coupling (SWIC) between PtSe2 and MoSe2 monolayers, which is supported by the electrostatic force microscopy imaging. Ultrafast hole transfer between PtSe2 and MoSe2 monolayers is observed in the PtSe2/MoSe2 heterostructure, matching well with the theoretical results. Our study will shed light on the synthesis of Pt-based TMD heterostructures and boost the realization of SWIC-based optoelectronic devices.

12.
Adv Mater ; 31(23): e1900862, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30997722

RESUMO

Alloying 2D transition metal dichalcogenides has opened up new opportunities for bandgap engineering and phase control. Developing a simple and scalable synthetic route is therefore essential to explore the full potential of these alloys with tunable optical and electrical properties. Here, the direct synthesis of monolayer WTe2 x S2(1- x ) alloys via one-step chemical vapor deposition (CVD) is demonstrated. The WTe2 x S2(1- x ) alloys exhibit two distinct phases (1H semiconducting and 1T ' metallic) under different chemical compositions, which can be controlled by the ratio of chalcogen precursors as well as the H2 flow rate. Atomic-resolution scanning transmission electron microscopy-annular dark field (STEM-ADF) imaging reveals the atomic structure of as-formed 1H and 1T ' alloys. Unlike the commonly observed displacement of metal atoms in the 1T ' phase, local displacement of Te atoms from original 1H lattice sites is discovered by combined STEM-ADF imaging and ab initio molecular dynamics calculations. The structure distortion provides new insights into the structure formation of alloys. This generic synthetic approach is also demonstrated for other telluride-based ternary monolayers such as WTe2 x Se2(1- x ) single crystals.

13.
J Vis Exp ; (143)2019 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-30688303

RESUMO

The phytohormone gibberellin (GA) is a small, mobile signaling molecule that plays a key role in seed germination, cellular elongation, and developmental transitions in plants. Gibberellin Perception Sensor 1 (GPS1) is the first Förster resonance energy transfer (FRET)-based biosensor that allows monitoring of cellular GA levels in vivo. By measuring a fluorescence emission ratio of nuclear localized-GPS1 (nlsGPS1), spatiotemporal mapping of endogenously and exogenously supplied GA gradients in different tissue types is feasible at a cellular scale. This protocol will describe how to image nlsGPS1 emission ratios in three example experiments: steady-state, before-and-after exogenous gibberellin A4 (GA4) treatments, and over a treatment time-course. We also provide methods to analyze nlsGPS1 emission ratios using both Fiji and a commercial three-dimensional (3-D) micrograph visualization and analysis software and explain the limitations and likely pitfalls of using nlsGPS1 to quantify gibberellin levels.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Giberelinas/metabolismo , Arabidopsis/metabolismo , Perfusão , Raízes de Plantas/metabolismo , Transdução de Sinais
14.
BMC Neurosci ; 19(1): 53, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189850

RESUMO

BACKGROUND: Cys-loop receptors play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular, transmembrane (TM) and intracellular domain. Each TM domain contains 4 α-helices (M1-M4) joined by loops of varying lengths. Many of the amino acid residues that constitute these α-helices are hydrophobic, and there has been particular interest in aromatic residues, especially those in M4, which have the potential to contribute to the assembly and function of the receptor via a range of interactions with nearby residues. RESULTS: Here we show that many aromatic residues in the M1, M3 and M4 α-helices of the glycine receptor are involved in the function of the receptor. The residues were explored by creating a range of mutant receptors, characterising them using two electrode voltage clamp in Xenopus oocytes, and interpreting changes in receptor parameters using currently available structural information on the open and closed states of the receptor. For 7 residues function was ablated with an Ala substitution: 3 Tyr residues at the extracellular end of M1, 2 Trp residues located towards the centers of M1 and M3, and a Phe and a Tyr residue in M4. For many of these an alternative aromatic residue restored wild-type-like function indicating the importance of the π ring. EC50s were increased with Ala substitution of 8 other aromatic residues, with those in M1 and M4 also having reduced currents, indicating a role in receptor assembly. The structure shows many potential interactions with nearby residues, especially between those that form the M1/M3/M4 interface, and we identify those that are supported by the functional data. CONCLUSION: The data reveal the importance and interactions of aromatic residues in the GlyR M1, M3 and M4 α-helices, many of which are essential for receptor function.


Assuntos
Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos , Técnicas de Patch-Clamp , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Glicina/química , Relação Estrutura-Atividade , Xenopus
15.
J Biol Chem ; 293(36): 13889-13896, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-29941455

RESUMO

Glycine receptors (GlyRs) are Cys-loop receptors that mediate fast synaptic inhibition in the brain stem and spinal cord. They are involved in the generation of motor rhythm, reflex circuit coordination, and sensory signal processing and therefore represent targets for therapeutic interventions. The extracellular domains (ECDs) of Cys-loop receptors typically contain many aromatic amino acids, but only those in the receptor binding pocket have been extensively studied. Here, we show that many Phe residues in the ECD that are not located in the binding pocket are also involved in GlyR function. We examined these Phe residues by creating several GlyR variants, characterizing these variants with the two-electrode voltage clamp technique in Xenopus oocytes, and interpreting changes in receptor parameters by using currently available structural information on the open and closed states of the GlyR. Substitution of six of the eight Phe residues in the ECD with Ala resulted in loss of function or significantly increased the EC50 and also altered the maximal response to the partial GlyR agonist taurine compared with glycine in those receptor variants that were functional. Substitutions with other amino acids, combined with examination of nearby residues that could potentially interact with these Phe residues, suggested interactions that could be important for GlyR function, and possibly similar interactions could contribute to the function of other members of the Cys-loop receptor family. Overall, our results suggest that many ECD regions are important for GlyR function and that these regions could inform the design of therapeutic agents targeting GlyR activity.


Assuntos
Fenilalanina/genética , Receptores de Glicina/genética , Substituição de Aminoácidos , Animais , Humanos , Mutação com Perda de Função , Fenilalanina/fisiologia , Ligação Proteica/genética , Domínios Proteicos/genética , Engenharia de Proteínas/métodos , Receptores de Glicina/fisiologia , Taurina/metabolismo
16.
Biochemistry ; 57(27): 4029-4035, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29947514

RESUMO

The extracellular domains (ECDs) of Cys-loop receptors contain many aromatic amino acids, but only relatively few have been well studied. Here we explore the roles of Tyr and Trp residues in the ECD of the glycine receptor and show that four such residues that have not been previously studied (Y24, Y58, W170, and Y197) contribute significantly to the function of the protein. The residues were studied by creating mutant receptors, characterizing them using two-electrode voltage clamp in Xenopus oocytes, and interpreting changes in receptor parameters using structural information about the open and closed states of the receptor. Alanine substitution of all these residues ablates function or increases the glycine EC50. There are also a number of changes in the relative maximal responses to taurine, a partial agonist, compared to glycine. Further mutations, in combination with structural information, suggest Y24 contributes to an anion-π interaction with a binding loop D residue, Y58 to an S-π interaction stabilizing the Cys loop, W170 to hydrophobic interactions stabilizing the hydrophobic interior of the subunit, and Y197 to a hydrogen bond linking binding loops B and C. These interactions appear to be broadly conserved in other Cys-loop receptors. Thus, we have identified new regions of the glycine receptor that are important contributors to receptor activation and are likely also to contribute to function in other members of this important protein family.


Assuntos
Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Glicina/metabolismo , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Receptores de Glicina/genética , Alinhamento de Sequência , Taurina/metabolismo , Triptofano/química , Triptofano/genética , Triptofano/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Xenopus
17.
Adv Mater ; 29(34)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28692747

RESUMO

Compared with 2D S-based and Se-based transition metal dichalcogenides (TMDs), Te-based TMDs display much better electrical conductivities, which will be beneficial to enhance the capacitances in supercapacitors. However, to date, the reports about the applications of Te-based TMDs in supercapacitors are quite rare. Herein, the first supercapacitor example of the Te-based TMD is reported: the type-II Weyl semimetal 1Td WTe2 . It is demonstrated that single crystals of 1Td WTe2 can be exfoliated into the nanosheets with 2-7 layers by liquid-phase exfoliation, which are assembled into air-stable films and further all-solid-state flexible supercapacitors. The resulting supercapacitors deliver a mass capacitance of 221 F g-1 and a stack capacitance of 74 F cm-3 . Furthermore, they also show excellent volumetric energy and power densities of 0.01 Wh cm-3 and 83.6 W cm-3 , respectively, superior to the commercial 4V/500 µAh Li thin-film battery and the commercial 3V/300 µAh Al electrolytic capacitor, in association with outstanding mechanical flexibility and superior cycling stability (capacitance retention of ≈91% after 5500 cycles). These results indicate that the 1Td WTe2 nanosheet is a promising flexible electrode material for high-performance energy storage devices.

18.
Mater Sci Eng C Mater Biol Appl ; 65: 27-32, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27157724

RESUMO

We report a simple "one-pot" solvothermal preparation of silver nanoparticles (Ag NPs) decorated mesoporous titania (TiO2) microspheres as an effective antibacterial agent. TBOT as Ti source was hydrolyzed and crystallized in media composed of acetic acid and ethanol, in which esterification catalyzed by TBOT occurred for in-situ "controlled water release". AgNO3 as Ag source was reduced by ethanol to form Ag NPs embedded in the TiO2 microspheres. The effect of AgNO3 and HAc on the morphology of Ag/TiO2 was investigated. The Ag/TiO2 with various Ag content showed excellent antibacterial activities with extremely low minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Escherichia coli and Staphylococcus aureus when compared with colloidal Ag NPs.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Microesferas , Prata/química , Titânio/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Porosidade , Nitrato de Prata/química , Staphylococcus aureus/efeitos dos fármacos
19.
Carbohydr Polym ; 135: 101-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26453857

RESUMO

The gelation of alginate in aqueous solution was studied as a function of Ca(2+) concentration. At each given concentration of alginate, a critical gel concentration [Formula: see text] , was successfully determined for the first time using the Winter-Chambon criterion. The critical gel concentration [Formula: see text] was found to increase linearly with alginate concentration. At the same time, the critical relaxation exponent n decreased and the critical gel strength Sg increased linearly with alginate concentration. An improved egg-box model was proposed to describe the change in gel junction and gel network. In the stable gel state, the plateau modulus Ge of alginate gel depended on Ca(2+) concentration according to a power-law scaling, Ge=kɛ(1.5), where ɛ is the relative distance of a gelling variable (Ca(2+) concentration in this case) from the gel point ( [Formula: see text] ). The FESEM images verified the microstructure of alginate gel in which alginate chains associated into fibrils in the presence of Ca(2+) ions. The fibrillar diameter and network density increased with increasing Ca(2+) ion concentration while alginate concentration had a weak influence on fibrillar diameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...