Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (106): e53200, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26710105

RESUMO

Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal-semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω(-) (1) cm(-) (1), with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed. Similar results can be obtained for other layer semiconductor materials such as MoS2 and WS2.


Assuntos
Molibdênio/química , Nanoestruturas/química , Compostos de Selênio/química , Semicondutores , Condutividade Elétrica , Eletricidade , Elétrons , Desenho de Equipamento
2.
Nanotechnology ; 25(41): 415706, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25249412

RESUMO

We report on the observation of the substantial thickness (t)-dependent electrical conductivity (σ) at a wide thickness range for an MoSe2 layer semiconductor. The conductivity increases for more than two orders of magnitude from 4.6 to 1500 Ω(-1) cm(-1) with a decrease in thickness from 2700 to 6 nm. The conductivity was found to follow a nearly linear relationship with the reciprocal thickness, i.e. σ ∝ 1/t. The temperature-dependent conductivity measurements also show that the MoSe2 multilayers have much lower activation energies at 3.5-8.5 meV than those (36-38 meV) of their bulk counterparts, indicating the different origins of the majority carrier. These results imply the presence of higher surface conductivity or carrier surface accumulation in this layer crystal. The fabrication of ohmic contacts for the MoSe2 layer nanocrystals using the focused-ion beam (FIB) technique was also demonstrated. This study provides a new understanding which is crucial for the development of flexible electronic devices and transparent conducting materials using ultrathin dichalcogenide layer materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...