Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 311: 122690, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38976935

RESUMO

The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.

2.
J Phys Chem B ; 127(47): 10129-10141, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37972315

RESUMO

Polymers incorporating cobaltocenium groups have received attention as promising components of anion-exchange membranes (AEMs), exhibiting a good balance of chemical stability and high ionic conductivity. In this work, we analyze the hydroxide diffusion in the presence of cobaltocenium cations in an aqueous environment based on the molecular dynamics of model systems confined in one dimension to mimic the AEM channels. In order to describe the proton hopping mechanism, the forces are obtained from the electronic structure computed at the density-functional tight-binding level. We find that the hydroxide diffusion depends on the channel size, modulation of the electrostatic interactions by the solvation shell, and its rearrangement ability. Hydroxide diffusion proceeds via both the vehicular and structural diffusion mechanisms with the latter playing a larger role at low diffusion coefficients. The highest diffusion coefficient is observed under moderate water densities (around half the density of liquid water) when there are enough water molecules to form the solvation shell, reducing the electrostatic interaction between ions, yet there is enough space for the water rearrangements during the proton hopping. The effects of cobaltocenium separation, orientation, chemical modifications, and the role of nuclear quantum effects are also discussed.

3.
Biomaterials ; 301: 122275, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619264

RESUMO

Inspired by the facial amphiphilic nature and antimicrobial efficacy of many antimicrobial peptides, this work reported facial amphiphilic bicyclic naphthoic acid derivatives with different ratios of charges to rings that were installed onto side chains of poly(glycidyl methacrylate). Six quaternary ammonium-charged (QAC) polymers were prepared to investigate the structure-activity relationship. These QAC polymers displayed potent antibacterial activity against various multi-drug resistant (MDR) gram-negative pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymers demonstrated low hemolysis and high antimicrobial selectivity. Additionally, they were able to eradicate established biofilms and kill metabolically inactive dormant cells. The membrane permeabilization and depolarization results indicated a mechanism of action through membrane disruption. Two lead polymers showed no resistance from MDR-P. aeruginosa and MDR-K. pneumoniae. These facial amphiphiles are potentially a new class of potent antimicrobial agents to tackle the antimicrobial resistance for both planktonic and biofilm-related infections.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Biofilmes , Escherichia coli
4.
Adv Healthc Mater ; 12(31): e2301764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565371

RESUMO

Among multiple approaches to combating antimicrobial resistance, a combination therapy of existing antibiotics with bacterial membrane-perturbing agents is promising. A viable platform of metallopolymers as adjuvants in combination with traditional antibiotics is reported in this work to combat both planktonic and stationary cells of Gram-negative superbugs and their biofilms. Antibacterial efficacy, toxicity, antibiofilm activity, bacterial resistance propensity, and mechanisms of action of metallopolymer-antibiotic combinations are investigated. These metallopolymers exhibit 4-16-fold potentiation of antibiotics against Gram-negative bacteria with negligible toxicity toward mammalian cells. More importantly, the lead combinations (polymer-ceftazidime and polymer-rifampicin) eradicate preformed biofilms of MDR E. coli and P. aeruginosa, respectively. Further, ß-lactamase inhibition, outer membrane permeabilization, and membrane depolarization demonstrate synergy of these adjuvants with different antibiotics. Moreover, the membrane-active metallopolymers enable the antibiotics to circumvent bacterial resistance development. Altogether, the results indicate that such non-antibiotic adjuvants bear the promise to revitalize the efficacy of existing antibiotics to tackle Gram-negative bacterial infections.


Assuntos
Antibacterianos , Escherichia coli , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Polímeros/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Mamíferos
5.
ACS Infect Dis ; 9(9): 1769-1782, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535907

RESUMO

We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Ácidos e Sais Biliares/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Biofilmes , Candida albicans , Bactérias , Mamíferos
6.
Bioact Mater ; 20: 519-527, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35846842

RESUMO

Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides.

7.
Nat Commun ; 13(1): 6852, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369146

RESUMO

Despite major advances in HIV testing, ultrasensitive detection of early infection remains challenging, especially for the viral capsid protein p24, which is an early virological biomarker of HIV-1 infection. Here, To improve p24 detection in patients missed by immunological tests that dominate the diagnostics market, we show a click chemistry amplified nanopore (CAN) assay for ultrasensitive quantitative detection. This strategy achieves a 20.8 fM (0.5 pg/ml) limit of detection for HIV-1 p24 antigen in human serum, demonstrating 20~100-fold higher analytical sensitivity than nanocluster-based immunoassays and clinically used enzyme-linked immunosorbent assay, respectively. Clinical validation of the CAN assay in a pilot cohort shows p24 quantification at ultra-low concentration range and correlation with CD4 count and viral load. We believe that this strategy can improve the utility of p24 antigen in detecting early infection and monitoring HIV progression and treatment efficacy, and also can be readily modified to detect other infectious diseases.


Assuntos
Infecções por HIV , HIV-1 , Nanoporos , Humanos , Química Click , Proteína do Núcleo p24 do HIV , Teste de HIV , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade
8.
Biomater Transl ; 3(2): 162-171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105565

RESUMO

Compared with single-network hydrogels, double-network hydrogels offer higher mechanical strength and toughness. Integrating useful functions into double-network hydrogels can expand the portfolios of the hydrogels. We report the preparation of double-network metallopolymer hydrogels with remarkable hydration, antifouling, and antimicrobial properties. These cationic hydrogels are composed of a first network of cationic cobaltocenium polyelectrolytes and a second network of polyacrylamide, all prepared via radical polymerization. Antibiotics were further installed into the hydrogels via ion-complexation with metal cations. These hydrogels exhibited significantly enhanced hydration, compared with polyacrylamide-based hydrogels, while featuring robust mechanical strength. Cationic metallopolymer hydrogels exhibited strong antifouling against oppositely charged proteins. These antibiotic-loaded hydrogels demonstrated a synergistic effect on the inhibition of bacterial growth and antifouling of bacteria, as a result of the unique ion complexation of cobaltocenium cations.

9.
J Chem Theory Comput ; 18(5): 3099-3110, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35404607

RESUMO

Cationic cobaltocenium derivatives are promising components of the anion exchange membranes because of their excellent thermal and alkaline stability under the operating conditions of a fuel cell. Here, we present an efficient modeling approach to assessing the chemical stability of substituted cobaltocenium CoCp2+, based on the computed electronic structure enhanced by machine learning techniques. Within the aqueous environment, the positive charge of the metal cation is balanced by the hydroxide anion through formation of the CoCp2+OH- complexes, whose dissociation is studied within the implicit solvent employing the density functional theory. The data set of about 118 the CoCp2+OH- complexes based on 42 substituent groups characterized by a range of electron-donating (ED) and electron-withdrawing (EW) properties is constructed and analyzed. Given 12 carefully chosen chemistry-informed descriptors of the complexes and relevant fragments, the stability of the complexes is found to strongly correlate with the energies of the highest occupied and lowest unoccupied molecular orbitals, modulated by a switching function of the Hirshfeld charge. The latter is used as a measure of the electron-withdrawing-donating character of the substituents. On the basis of this observation from the conventional regression analysis, two fully connected, feed-forward neural network (FNN) models with different unit structures, called the chemistry-informed (CINN) and the quadratic (QNN) neural networks, together with a support vector regression (SVR) model are developed. Both deep neural network models predict the bond dissociation energies of the cobaltocenium complexes with mean relative errors less than 10.56% and average absolute errors less than 1.63 kcal/mol, superior to the conventional regression and the SVR model prediction. The results show the potential of QNN to efficiently capture more complex relationships. The concept of incorporating the domain (chemical) knowledge/insight into the neural network structure paves the way to applications of machine learning techniques with small data sets, ultimately leading to better predictive models compared to the classical machine learning method SVR and conventional regression analysis.


Assuntos
Cobalto , Anticoncepcionais Orais Combinados , Elétrons , Feminino , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
10.
J Phys Chem A ; 126(1): 80-87, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34974709

RESUMO

Metallocenium cations, used as a component in an anion exchange membrane of a fuel cell, demonstrate excellent thermal and alkaline stability, which can be improved by the chemical modification of the cyclopentadienyl rings with substituent groups. In this work, the relation between the bond dissociation energy (BDE) of the cobaltocenium (CoCp2+) derivatives, used as a measure of the cation stability, and chemistry-informed descriptors obtained from the electronic structural calculations is established. The analysis of 12 molecular descriptors for 118 derivatives reveals a nonlinear dependence of the BDE on the electron donating-withdrawing character of the substituent groups coupled to the energy of the frontier molecular orbitals. A chemistry-informed feed-forward neural network trained using k-fold cross-validation over the modest data set is able to predict the BDE from the molecular descriptors with the mean absolute error of about 1 kcal/mol. The theoretical analysis suggests some promising modifications of cobaltocenium for experimental research. The results demonstrate that even for modest data sets the incorporation of the chemistry knowledge into the neural network architecture, e.g., through mindful selection and screening of the descriptors and their interactions, paves the way to gain new insight into molecular properties.

11.
Biomater Sci ; 9(21): 7237-7246, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34596174

RESUMO

This paper reports antimicrobial metallopolymers containing biodegradable polycaprolactone as the backbone with boronic acid and cobaltocenium as the side chain. While boronic acid promotes interactions with bacterial cells via boronolectin with lipopolysaccharides, cationic cobaltocenium facilitates the unique complexation with anionic ß-lactam antibiotics. The synergistic interactions in these metallopolymer-antibiotic bioconjugates were evidenced by re-sensitized efficacy of penicillin-G against four different Gram-negative bacteria (E. coli, P. vulgaris, P. aeruginosa and K. pneumoniae). The degradability of the polyester backbone was validated through tests under physiological pH (7.4) and acidic pH (5.5) or under enzymatic conditions. These metallopolymers exhibited time-dependent uptake and reduction of cobalt metals in different organs of mice via in vivo absorption, distribution, metabolism, and excretion (ADME) tests.


Assuntos
Antibacterianos , Escherichia coli , Animais , Ácidos Borônicos , Camundongos , Testes de Sensibilidade Microbiana , Poliésteres
12.
J Am Chem Soc ; 143(30): 11871-11878, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283587

RESUMO

Recent research on the mechanochemistry of metallocene mechanophores has shed light on the force-responsiveness of these thermally and chemically stable organometallic compounds. In this work, we report a combination of experimental and computational studies on the mechanochemistry of main-chain cobaltocenium-containing polymers. Ester derivatives of the cationic cobaltocenium, though isoelectronic to neutral ferrocene, are unstable in the nonmechanical control experimental conditions that were accommodated by their ferrocene analogs. Replacing the electron withdrawing C-ester linkages with electron-donating C-alkyls conferred the necessary stability and enabled the mechanochemistry of the cobaltocenium to be assessed. Despite their high bond dissociation energy, cobaltocenium mechanophores are found to be selective sites of main chain scission under sonomechanical activation. Computational CoGEF calculations suggest that the presence of a counterion to cobaltocenium plays a vital role by promoting a peeling mechanism of dissociation in conjunction with the initial slipping.

13.
Nat Rev Chem ; 5(11): 753-772, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36238089

RESUMO

The rich structures and hierarchical organizations in nature provide many sources of inspiration for advanced material designs. We wish to recapitulate properties such as high mechanical strength, colour-changing ability, autonomous healing and antimicrobial efficacy in next-generation synthetic materials. Common in nature are non-covalent interactions such as hydrogen bonding, ionic interactions and hydrophobic effects, which are all useful motifs in tailor-made materials. Among these are biobased components, which are ubiquitously conceptualized in the space of recently developed bioinspired and biomimetic materials. In this regard, sustainable organic polymer chemistry enables us to tune the properties and functions of such materials that are essential for daily life. In this Review, we discuss recent progress in bioinspired and biomimetic polymers and provide insights into biobased materials through the evolution of chemical approaches, including networking/crosslinking, dynamic interactions and self-assembly. We focus on advances in biobased materials; namely polymeric mimics of resilin and spider silk, mechanically and optically adaptive materials, self-healing elastomers and hydrogels, and antimicrobial polymers.

14.
Nat Chem ; 13(1): 56-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349695

RESUMO

Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand 'peeling', as opposed to the more conventional 'shearing' mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers.

15.
Polymer (Guildf) ; 1872020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32863439

RESUMO

Site-specific cobaltocenium-labeled polymers are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cobaltocenium-labeled chain transfer agents. These chain transfer agents show counterion-dependent solubility. Based on the chemical structure of the chain transfer agents, single cobaltocenium moieties are dictated to be in predetermined locations at either the center or terminals of the polymer chains. Polymerization of hydrophobic monomers (methyl methacrylate, methyl acrylate and styrene) and hydrophilic monomers (2-(dimethylamino)ethyl methacrylate and methacrylic acid) is demonstrated to follow a controlled manner based on kinetic studies. Cobaltocenium-labeled polymers with molecular weights greater than 100,000 Da can be prepared by using a difunctional chain transfer agent. Photophysical properties, electrochemical properties, thermal properties and morphology of the cobaltocenium-labeled polymers are also investigated.

16.
Adv Sci (Weinh) ; 7(14): 2000587, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32714764

RESUMO

Compressible solid-state supercapacitors are emerging as promising power sources for next-generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capacitive stability of these supercapacitor devices. Here, a lithium ion-conducting hydrogel electrolyte by integrating natural protein nanoparticles into polyacrylamide network is reported. Due to the synergistic effect of natural protein nanoparticles and polyacrylamide chains, the obtained hydrogel shows remarkable elasticity, high compressibility, and fatigue resistance properties. More significantly, the supercapacitor device based on this hydrogel electrolyte exhibits reversible compressibility under multiple cyclic compressions, working well under 80% strain for 1000 compression cycles without sacrificing its capacitive performance. This work offers a promising approach for compressible supercapacitors.

17.
J Mater Chem B ; 8(8): 1576-1588, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32031189

RESUMO

Nucleobase-functionalized covalent polymers are attracting great attention owing to their versatile structures, accessible architectures and robust properties. Although these materials are still inferior compared with DNA-based materials, they have demonstrated tremendous potential for more sophisticated applications in the biomedical field. In this review, we focus on recent advances concerning these materials. First, diverse synthetic strategies of nucleobase-functionalized polymers are introduced and summarized, emphasizing the accessible degree of polymerization and species of nucleobase functionalities. Template polymerization is highlighted as a novel and unique method for the synthesis of nucleobase-containing polymers. Various applications, such as drug and gene delivery carriers, supramolecular hydrogels and adhesives, and self-healing materials, are discussed. This review concludes with issues and challenges that are faced by this class of materials, in the hope of promoting further development of nucleobase-functionalized polymers for broader applications.


Assuntos
Materiais Biocompatíveis/química , Nucleosídeos/química , Polímeros/química , Materiais Biocompatíveis/síntese química , Portadores de Fármacos/química , Inativação Gênica , Técnicas de Transferência de Genes , Hidrogéis/química , Polímeros/síntese química
18.
ACS Appl Mater Interfaces ; 12(19): 21221-21230, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31939652

RESUMO

New antimicrobial agents are needed to address ever-increasing antimicrobial resistance and a growing epidemic of infections caused by multidrug resistant pathogens. We design nanostructured antimicrobial copolymers containing multicyclic natural products that bear facial amphiphilicity. Bile acid based macromolecular architectures of these nanostructures can interact preferentially with bacterial membranes. Incorporation of polyethylene glycol into the copolymers not only improved the colloidal stability of nanostructures but also increased the biocompatibility. This study investigated the effects of facial amphiphilicity, polymer architectures, and self-assembled nanostructures on antimicrobial activity. Advanced nanostructures such as spheres, vesicles, and rod-shaped aggregates are formed in water from the facial amphiphilic cationic copolymers via supramolecular interactions. These aggregates were particularly interactive toward Gram-positive and Gram-negative bacterial cell membranes and showed low hemolysis against mammalian cells.


Assuntos
Antibacterianos/farmacologia , Ácidos e Sais Biliares/farmacologia , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Tensoativos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/toxicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/química , Nanoestruturas/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polímeros/síntese química , Polímeros/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/síntese química , Tensoativos/toxicidade
19.
Trends Chem ; 2(3): 227-240, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34337370

RESUMO

Since the middle of the 20th century, metallopolymers have represented a standalone subfield with a beneficial combination of functionality from inorganic metal centers and processability from the organic polymeric frameworks. Metallo-polyelectrolytes are a new class of soft materials that showcase fundamentally different properties from neutral polymers due to their intrinsically ionic behaviors. This review describes recent trends in metallo-polyelectrolytes and discusses emerging properties and challenges, as well as future directions from a perspective of macromolecular architectures. The correlations between macromolecular architectures and properties are discussed from copolymer self-assembly, metallo-enzymes for biomedical applications, metallo-peptides for catalysis, crosslinked networks, and metallogels.

20.
J Polym Sci (2020) ; 58(1): 77-83, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337427

RESUMO

Cobaltocenium-containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain-transfer agent (macro-CTA) based on poly (2-cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core-forming block was poly(2-hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro-CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core-forming PHPMA had a strong influence on the size of nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...