Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(23-24): 1190-1203, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642232

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) system is a powerful genomic DNA editing tool. The increased applications of gene editing tools, including the CRISPR-Cas system, have contributed to recent advances in biological fields, such as genetic disease therapy, disease-associated gene screening and detection, and cancer therapy. However, the major limiting factor for the wide application of gene editing tools is gene editing efficiency. This review summarizes the recent advances in factors affecting the gene editing efficiency of the CRISPR-Cas9 system and the CRISPR-Cas9 system optimization strategies. The homology-directed repair efficiency-related signal pathways and the form and delivery method of the CRISPR-Cas9 system are the major factors that influence the repair efficiency of gene editing tools. Based on these influencing factors, several strategies have been developed to improve the repair efficiency of gene editing tools. This review provides novel insights for improving the repair efficiency of the CRISPR-Cas9 gene editing system, which may enable the development and improvement of gene editing tools.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Reparo de DNA por Recombinação , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA