Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38797171

RESUMO

Background N-glycosylation is one of the most common post-translational modifications in humans, and these alterations are associated with kidney diseases. Methods A novel technological approach, single-cell N-acetyllactosamine sequencing (scLacNAc-seq), was applied to simultaneously detect N-glycosylation expression and the transcriptome at single-cell resolution in three human kidney tissues from zero-time biopsy. Cell clusters, glycation abundance in each cell cluster, functional enrichment analysis, cell-cell crosstalk, and Pseudotime analysis were applied. Results Using scLacNAc-seq, 24,247 cells and 22 cell clusters were identified, and N-glycan abundance in each cell was obtained. Transcriptome analysis revealed a close connection between capillary endothelial cells (CapECs) and parietal epithelial cells (PECs). PECs and CapECs communicate with each other through several pairs of ligand receptors (e.g., TGFB1-EGFR, GRN-EGFR, TIMP1-FGFR2, VEGFB-FLT1, ANGPT2-TEK, and GRN-TNFRSF1A). Finally, a regulatory network of cell-cell crosstalk between PECs and CapECs was constructed, which is involved in cell development. Conclusions We here, for the first time, constructed the glycosylation profile of 22 cell clusters in the human kidney from time-zero biopsy. Moreover, cell-cell communication between PECs and CapECs through the ligand-receptor system may play a crucial regulatory role in cell proliferation.

2.
Am J Cancer Res ; 14(3): 1402-1418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590397

RESUMO

The role of vesicular genes in the development of colorectal cancer (CRC) is crucial. Analyzing alterations in these genes at multi-omics can aid in understanding the molecular pathways behind colorectal carcinogenesis and identifying potential treatment targets. However, studies on the overall alteration of vesicular genes in CRC are still lacking. In this study, we aimed to investigate the relationship between vesicle genetic alterations and CRC progression. To achieve this, we analyzed molecular alterations in CRC vesicle genes at eight levels, including mRNA, protein, and epigenetic levels. Additionally, we examined CRC overall survival-related genes that were obtained from a public database. Our analysis of chromatin structural variants, DNA methylation, chromatin accessibility, and proteins (including phosphorylation, ubiquitination, and malonylation), along with RNA-seq data from the TCGA database, revealed multiple levels of alterations in CRC vesicle genes in the collected tissue samples. We progressively examined the alterations of vesicle genes in mRNA and protein levels in CRC and discovered the hub genes. Further investigation identified the probable essential transcription factors. This study contributes to a thorough knowledge of the connection between vesicle gene alterations at multiple levels and the development of CRC and offers a theoretical framework for the identification of novel treatment targets.

3.
ACS Omega ; 8(47): 44905-44919, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046296

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a severe systemic autoimmune disease with multiple manifestations. Lysine crotonylation (Kcr) is a newly discovered posttranslational modification epigenetic pattern that may affect gene expression and is linked to diseases causally. METHODS: We collected blood samples from 11 SLE individuals and 36 healthy subjects. Then, we used highly sensitive liquid chromatography-mass spectrometry technology to carry out proteomics and quantitative crotonylome analysis of SLE peripheral blood mononuclear cells in this investigation, which indicated the unique etiology of SLE. Finally, we verified the expression of critical protein in the leukocyte extravasation pathway by online database analysis and Western blot. RESULTS: There were 618 differentially expressed proteins (DEPs), and 612 crotonylated lysine sites for 272 differentially modified proteins (DMPs) found. These DEPs and DMPs are primarily enriched in the leukocyte extravasation signaling pathway, such as MMP8, MMP9, and ITGAM. CONCLUSIONS: This is the first study of crotonylated modification proteomics in SLE. The leukocyte extravasation signaling pathway had a considerable concentration of DEPs and DMPs, indicating that this pathway may be involved in the pathogenic development of SLE.

4.
Proteome Sci ; 21(1): 22, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041078

RESUMO

Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.

5.
Front Clin Diabetes Healthc ; 4: 1270028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143793

RESUMO

Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.

6.
Medicine (Baltimore) ; 102(50): e36476, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115247

RESUMO

Idiopathic membranous nephropathy (IMN) is a common type of primary glomerulonephritis, which pathogenesis are highly involved protein and immune regulation. Therefore, we investigated protein expression in different microregions of the IMN kidney tissue. We used laser capture microdissection and mass spectrometry to identify the proteins in the kidney tissue. Using MSstats software to identify the differently expressed protein (DEP). Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to predict and enrich the potential functions of the DEPs, and DEPs were compared to the Public data in the gene expression omnibus (GEO) database for screening biomarkers of IMN. Immune infiltration analysis was used to analyze the immune proportion in IMN. Three significantly up-regulated proteins were identified in the glomeruli of patients with IMN; 9 significantly up-regulated and 6 significantly down-regulated proteins were identified in the interstitium of patients with IMN. Gene ontology analysis showed that the DEPs in the glomerulus and interstitium were mostly enriched in "biological regulation, the immune system, and metabolic processes." Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEPs in the glomerulus and interstitium were mostly enriched in the "immune system" and the "complement and coagulation cascades. " According to the public information of the GEO database, DEPs in our study, Coatomer subunit delta Archain 1, Laminin subunit alpha-5, and Galectin-1 were highly expressed in the IMN samples from the GEO database; in the immune infiltration analysis, the proportion of resting memory CD4 T cells and activated NK cells in IMN were significantly higher than in the normal group. This study confirmed that there were significant differences in protein expression in different micro-regions of patients with IMN, The protein Coatomer subunit delta Archain 1, Laminin subunit alpha 5, Galectin-1 are potential biomarkers of IMN, the memory T cells CD4 and NK cells, maybe involved in the immunologic mechanism in the development of IMN.


Assuntos
Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/diagnóstico , Galectina 1 , Proteína Coatomer , Proteômica , Rim/patologia , Biomarcadores , Laminina
7.
BMC Med Genomics ; 16(1): 247, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845672

RESUMO

BACKGROUND: Post-translational modifications (PTMs) are considered to be an important factor in the pathogenesis of Systemic lupus erythematosus (SLE). Lysine 2-hydroxyisobutyryl (Khib), as an emerging post-translational modification of proteins, is involved in some important biological metabolic activities. However, there are poor studies on its correlation with diseases, especially SLE. OBJECTIVE: We performed quantitative, comparative, and bioinformatic analysis of Khib proteins in Peripheral blood mononuclear cells (PBMCs) of SLE patients and PBMCs of healthy controls. Searching for pathways related to SLE disease progression and exploring the role of Khib in SLE. METHODS: Khib levels in SLE patients and healthy controls were compared based on liquid chromatography tandem mass spectrometry, then proteomic analysis was conducted. RESULTS: Compared with healthy controls, Khib in SLE patients was up-regulated at 865 sites of 416 proteins and down-regulated at 630 sites of 349 proteins. The site abundance, distribution and function of Khib protein were investigated further. Bioinformatics analysis showed that Complement and coagulation cascades and Platelet activation in immune-related pathways were significantly enriched, suggesting that differentially modified proteins among them may affect SLE. CONCLUSION: Khib in PBMCs of SLE patients was significantly up- or down-regulated compared with healthy controls. Khib modification of key proteins in the Complement and coagulation cascades and Platelet activation pathways affects platelet activation and aggregation, coagulation functions in SLE patients. This result provides a new direction for the possible significance of Khib in the pathogenesis of SLE patients.


Assuntos
Lúpus Eritematoso Sistêmico , Lisina , Humanos , Lisina/genética , Lisina/metabolismo , Proteômica , Leucócitos Mononucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas do Sistema Complemento/metabolismo , Ativação Plaquetária
8.
Proteome Sci ; 21(1): 18, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833721

RESUMO

BACKGROUND: End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited. METHODS: In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls. RESULTS: On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered. CONCLUSIONS: These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.

10.
World J Surg Oncol ; 21(1): 301, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741973

RESUMO

PURPOSE: Oral adenoid cystic carcinoma (OACC) has high rates of both local-regional recurrence and distant metastasis. The objective of this study is to investigate the impact of Khib on OACC and its potential as a targeted therapeutic intervention. EXPERIMENTAL DESIGN: We investigated the DEPs (differentially expressed proteins) and DHMPs between OACC-T and OACC-N using LC-MS/MS-based quantitative proteomics and using several bioinformatics methods, including GO enrichment analysis, KEGG pathway analysis, subcellular localization prediction, MEA (motif enrichment analysis), and PPI (protein-protein interaction networks) to illustrate how Khib modification interfere with OACC evolution. RESULTS: Compared OACC-tumor samples (OACC-T) with the adjacent normal samples (OACC-N), there were 3243 of the DEPs and 2011 Khib sites were identified on 764 proteins (DHMPs). DEPs and DHMPs were strongly associated to glycolysis pathway. GAPDH of K254, ENO of K228, and PGK1 of K323 were modified by Khib in OACC-T. Khib may increase the catalytic efficiency to promote glycolysis pathway and favor OACC progression. CONCLUSIONS AND CLINICAL RELEVANCE: Khib may play a significant role in the mechanism of OACC progression by influencing the enzyme activity of the glycolysis pathway. These findings may provide new therapeutic options of OACC.


Assuntos
Carcinoma Adenoide Cístico , Proteoma , Humanos , Proteoma/análise , Proteoma/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Glicólise
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 1021-1027, 2023 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-37532505

RESUMO

OBJECTIVE: To investigate the clinical features and genetic etiology of a case of Turner syndrome (TS) with rapidly progressive puberty. METHODS: A child who had presented at the Pediatric Endocrinology Clinic of the Shenzhen People's Hospital on January 19, 2022 was selected as the study subject. Clinical data of the child were collected. Peripheral blood sample of the child was subjected to chromosomal microarray analysis (CMA) and multiple ligation-dependent probe amplification (MLPA). Previous studies related to TS with rapidly progressive puberty were retrieved from the CNKI, Wanfang Data Knowledge Service Platform, Boku, CBMdisc and PubMed databases with Turner syndrome and rapidly progressive puberty as the keywords. The duration for literature retrieval was set from November 9, 2021 to May 31, 2022. The clinical characteristics and karyotypes of the children were summarized. RESULTS: The child was a 13-year-and-2-month-old female. She was found to have breast development at 9, short stature at 10, and menarche at 11. At 13, she was found to have a 46,X,i(X)(q10) karyotype. At the time of admission, she had a height of 143.5 cm (< P3), with 6 ~ 8 nevi over her face and right clavicle. She also had bilateral simian creases but no saddle nasal bridge, neck webbing, cubitus valgus, shield chest or widened breast distance. She had menstruated for over 2 years, and her bone age has reached 15.6 years. CMA revealed that she had a 58.06 Mb deletion in the Xp22.33p11.1 region and a 94.49 Mb duplication in the Xp11.1q28 region. MLPA has confirmed monosomy Xp and trisomy Xq. A total of 13 reports were retrieved from the CNKI, Wanfang Data Knowledge Service Platform, Boku, CBMdisc and PubMed databases, which had included 14 similar cases. Analysis of the 15 children suggested that their main clinical manifestations have included short stature and growth retardation, and their chromosomal karyotypes were mainly mosaicisms. CONCLUSION: The main clinical manifestations of TS with rapidly progressive puberty are short stature and growth retardation. Deletion in the Xp22.33p11.1 and duplication in the Xp11.1q28 probably underlay the TS with rapid progression in this child, which has provided a reference for clinical diagnosis and genetic counselling for her.


Assuntos
Puberdade , Síndrome de Turner , Humanos , Feminino , Adolescente , Síndrome de Turner/genética , Cromossomos Humanos X , Cariotipagem
13.
J Proteomics ; 287: 104977, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482272

RESUMO

Primary Sjogren's Syndrome (pSS) is a chronic autoimmune disease, with unclear pathogenies. Lysine-malonylation (Kmal) as a novel post-translational modification (PTMs) was found associated with metabolic, immune, and inflammatory processes. For purpose of investigating the proteomic profile and functions of kmal in pSS, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis and bioinformatics analysis are performed based on twenty-eight pSS patients versus twenty-seven healthy controls (HCs). A total of 331 down-regulated proteins and 289 up-regulated proteins are observed in differentially expressed proteins (DEPs) of pSS. We discover the expression of transforming growth factor beta-1 (TGFB1) and CD40 ligand downregulate which enriches in the inflammatory associated pathway. Expression of signal transducer and activator of transcription 1-alpha/beta (STAT1) show upregulation and enrich in type I interferon signaling pathway and IL-27-mediated signaling pathway. In differentially malonylated proteins (DMPs) of pSS, we identify 3 proteins are down-regulated in 7 sites and 18 proteins are up-regulated in 19 sites. Expression of malonylated integrin-linked kinase (ILK) significantly enrich in the focal adhesion pathway. Together, our data provide evidence that downregulation of TGFB1 and CD40LG play a critical role in the inflammatory process of pSS, while upregulation of STAT1 may be associated with IL-27 immunity and pSS immune dysfunction. Moreover, kmal modification at the kinase domain of ILK may destabilize ILK that thus contributing to pSS pathogenies by regulating the focal adhesion pathway. SIGNIFICANCE: Our research offered the first characterization of Kmal, a newly identified form of lysine acylation in pSS, as well as proteomic data on individuals with pSS. In this study, we found that several key DMPs were associated with focal adhesion pathway, which contributes to the development of pSS. The present results provide an informative dataset for the future exploration of Kmal in pSS.


Assuntos
Interleucina-27 , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/metabolismo , Lisina/metabolismo , Cromatografia Líquida , Proteômica/métodos , Espectrometria de Massas em Tandem
14.
Inflamm Res ; 72(8): 1603-1620, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474625

RESUMO

OBJECTIVE: We aimed to reveal a spatial proteomic and immune signature of kidney function regions in lupus nephritis (LN). MATERIAL AND METHODS: The laser capture microdissection (LCM) was used to isolate the glomerulus, tubules, and interstitial of the kidney from paraffin samples. The data-independent acquisition (DIA) method was used to collect proteomics data. The bioinformatic analysis was performed. RESULTS: A total of 49,658 peptides and 4056 proteins were quantitated. Our results first showed that a high proportion of activated NK cells, naive B cells, and neutrophils in the glomerulus, activated NK cells in interstitial, and resting NK cells were accumulated in tubules in LN. The immune-related function analysis of differential expression proteins in different regions indicated that the glomerulus and interstitial were major sites of immune disturbance and regulation connected with immune response activation. Furthermore, we identified 7, 8, and 9 hub genes in LN's glomerulus, renal interstitial, and tubules. These hub genes were significantly correlated with the infiltration of immune cell subsets. We screened out ALB, CTSB, LCN2, A2M, CDC42, VIM, LTF, and CD14, which show higher performance as candidate biomarkers after correlation analysis with clinical indexes. The function within three regions of the kidney was analyzed. The differential expression proteins (DEGs) between interstitial and glomerulus were significantly enriched in the immune-related biological processes, and myeloid leukocyte-mediated immunity and cellular response to hormone stimulus. The DEGs between tubules and glomerulus were significantly enriched in cell activation and leukocyte-mediated immunity. While the DEGs between tubules and interstitial were enriched in response to lipid, antigen processing, and presentation of peptide antigen response to oxygen-containing compound, the results indicated a different function within kidney regions. CONCLUSIONS: Collectively, we revealed spatial proteomics and immune signature of LN kidney regions by combined using LCM and DIA.


Assuntos
Nefrite Lúpica , Humanos , Nefrite Lúpica/metabolismo , Proteômica , Rim/metabolismo , Glomérulos Renais/metabolismo , Lasers
15.
Hepatol Commun ; 7(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486962

RESUMO

BACKGROUND: Chronic hepatitis B (CHB) infection leads to liver cirrhosis (LC), the end stage of liver fibrosis. The precise diagnosis and effective therapy for hepatitis B cirrhosis are still lacking. It is highly necessary to elucidate the metabolic alteration, especially the spatial distribution of metabolites, in LC progression. METHODS: In this study, LC-MS/MS together with an airflow-assisted ionization mass spectrometry imaging system was applied to analyze and compare the metabolites' spatial distribution in healthy control (HC) and hepatitis B LC tissue samples. The liver samples were further divided into several subregions in HC and LC groups based on the anatomical characteristics and clinical features. RESULTS: Both the LC-MS/MS and mass spectrometry imaging results indicated separated metabolite clusters between the HC and LC groups. The differential metabolites were mainly concentrated in lipid-like molecules and amino acids. The phosphatidylcholines (PCs), lysoPCs, several fatty acids, and amino acids reduced expression in the LC group with region specific. Acyl-CoA thioesterase 2 and choline/ethanolamine phosphotransferase 1, which regulate PC and fatty acid metabolism, were significantly decreased in the pseudolobule. Meanwhile, the increased expression of LC3B and p62 in the pseudolobule indicated the upregulation of autophagy. CONCLUSIONS: Hepatitis B LC induced region-specific autophagy by increasing the expression of LC3B and p62 in the pseudolobule and by dysregulation of unsaturated fatty acids, amino acids, and PC metabolism. The mass spectrometry imaging system provided additional metabolites' spatial information, which can promote biomarker screening technology and support the exploration of novel mechanisms in LC.


Assuntos
Antifibrinolíticos , Hepatite B , Humanos , Metabolismo dos Lipídeos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cirrose Hepática , Aminoácidos , Autofagia
16.
Comput Methods Programs Biomed ; 240: 107698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37429246

RESUMO

BACKGROUND AND OBJECTIVE: Intradialytic hypotension (IDH) is closely associated with adverse clinical outcomes in HD-patients. An IDH predictor model is important for IDH risk screening and clinical decision-making. In this study, we used Machine learning (ML) to develop IDH model for risk prediction in HD patients. METHODS: 62,227 dialysis sessions were randomly partitioned into training data (70%), test data (20%), and validation data (10%). IDH-A model based on twenty-seven variables was constructed for risk prediction for the next HD treatment. IDH-B model based on ten variables from 64,870 dialysis sessions was developed for risk assessment before each HD treatment. Light Gradient Boosting Machine (LightGBM), Linear Discriminant Analysis, support vector machines, XGBoost, TabNet, and multilayer perceptron were used to develop the predictor model. RESULTS: In IDH-A model, we identified the LightGBM method as the best-performing and interpretable model with C- statistics of 0.82 in Fall30Nadir90 definitions, which was higher than those obtained using the other models (P<0.01). In other IDH standards of Nadir90, Nadir100, Fall20, Fall30, and Fall20Nadir90, the LightGBM method had a performance with C- statistics ranged 0.77 to 0.89. As a complementary application, the LightGBM model in IDH-B model achieved C- statistics of 0.68 in Fall30Nadir90 definitions and 0.69 to 0.78 in the other five IDH standards, which were also higher than the other methods, respectively. CONCLUSION: Use ML, we identified the LightGBM method as the good-performing and interpretable model. We identified the top variables as the high-risk factors for IDH incident in HD-patient. IDH-A and IDH-B model can usefully complement each other for risk prediction and further facilitate timely intervention through applied into different clinical setting.


Assuntos
Hipertensão , Falência Renal Crônica , Estudos Retrospectivos , Hipertensão/etiologia , Diálise Renal/efeitos adversos , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Aprendizado de Máquina , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Risco Ajustado
17.
Front Biosci (Landmark Ed) ; 28(6): 131, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37395026

RESUMO

BACKGROUND: Osteopetrosis represents a rare genetic disease with a wide range of clinical and genetic heterogeneity, which results from osteoclast failure. Although up to 10 genes have been identified to be related with osteopetrosis, the pathogenesis of osteopetrosis remains foggy. Disease-specific induced pluripotent stem cells (iPSCs) and gene-corrected disease specific iPSCs provide a platform to generate attractive in vitro disease cell models and isogenic control cellular models respectively. The purpose of this study is to rescue the disease causative mutation in osteopetrosis specific induced pluripotent stem cells and provide isogenic control cellular models. METHODS: Based on our previously established osteopetrosis-specific iPSCs (ADO2-iPSCs), we repaired the point mutation R286W of the CLCN7 gene in ADO2-iPSCs by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated homologous recombination. RESULTS: The obtained gene corrected ADO2-iPSCs (GC-ADO2-iPSCs) were characterized in terms of hESC-like morphology, a normal karyotype, expression of pluripotency markers, homozygous repaired sequence of CLCN7 gene, and the ability to differentiate into cells of three germ layers. CONCLUSIONS: We successfully corrected the point mutation R286W of the CLCN7 gene in ADO2-iPSCs. This isogenic iPSC line is an ideal control cell model for deciphering the pathogenesis of osteopetrosis in future studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteopetrose , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Sistemas CRISPR-Cas , Osteopetrose/genética , Osteopetrose/terapia , Osteopetrose/metabolismo , Mutação , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
18.
Front Immunol ; 14: 1023248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383223

RESUMO

Background: Sjögren's syndrome (SS) is a systemic autoimmune disease that affects about 0.04-0.1% of the general population. SS diagnosis depends on symptoms, clinical signs, autoimmune serology, and even invasive histopathological examination. This study explored biomarkers for SS diagnosis. Methods: We downloaded three datasets of SS patients' and healthy pepole's whole blood (GSE51092, GSE66795, and GSE140161) from the Gene Expression Omnibus (GEO) database. We used machine learning algorithm to mine possible diagnostic biomarkers for SS patients. Additionally, we assessed the biomarkers' diagnostic value using the receiver operating characteristic (ROC) curve. Moreover, we confirmed the expression of the biomarkers through the reverse transcription quantitative polymerase chain reaction (RT-qPCR) using our own Chinese cohort. Eventually, the proportions of 22 immune cells in SS patients were calculated by CIBERSORT, and connections between the expression of the biomarkers and immune cell ratios were studied. Results: We obtained 43 DEGs that were mainly involved in immune-related pathways. Next, 11 candidate biomarkers were selected and validated by the validation cohort data set. Besides, the area under curves (AUC) of XAF1, STAT1, IFI27, HES4, TTC21A, and OTOF in the discovery and validation datasets were 0.903 and 0.877, respectively. Subsequently, eight genes, including HES4, IFI27, LY6E, OTOF, STAT1, TTC21A, XAF1, and ZCCHC2, were selected as prospective biomarkers and verified by RT-qPCR. Finally, we revealed the most relevant immune cells with the expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2. Conclusion: In this paper, we identified seven key biomarkers that have potential value for diagnosing Chinese SS patients.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/genética , Algoritmos , Área Sob a Curva , Biomarcadores , Computadores
19.
Heliyon ; 9(4): e15371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123902

RESUMO

Among urological cancers, renal cancer has the highest fatality rate. In a previous pan-cancer study of the METTL family, we observed a stronger association between the METTL family members and the risk of renal cancer compared to other cancers. Among these members, METTL7A, a potential methyltransferase, was identified as a protective factor, although its role and mechanism in renal cancer remain unclear. In this study, we utilized public databases to examine the expression of METTL7A in renal cancer tissues and normal tissues and found that METTL7A expression was much lower in renal cancer tissues. We also noticed a link between low METTL7A expression and poor prognosis for patients. According to the results of our functional enrichment analysis, METTL7A may have a role in immunological functions in renal cancer. METTL7A expression was strongly linked with the degrees of immune cell infiltration and expression of numerous immunological components. METTL7A had significantly different effects on the survival times of renal cancer patients with high or low immune infiltration. Our findings suggest that METTL7A may be used as both a prognostic biomarker and an immunological target for kidney cancer. In conclusion, our study sheds light on the importance of METTL7A in renal cancer and emphasizes the potential of targeting METTL7A as a novel therapeutic strategy for kidney cancer.

20.
PeerJ ; 11: e15294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255592

RESUMO

Background: Sepsis is a serious infection-induced response in the host, which can result in life-threatening organ dysfunction. It is of great importance to unravel the relationship between sepsis and host immune response and its mechanisms of action. Liver is one of the most vulnerable organs in sepsis, however, the specific pathogenesis of septic liver injury has not been well understood at the protein level. Methods: A total of 12 healthy Sprague-Dawley (SD) male rats aged from 6 to 8 weeks were adaptively housed in individual cages in the specific pathogen free animal room. These lab rats were grouped into two groups: treatment (N = 9) and control (N = 3) groups; only three mice from the treatment group survived and were used for subsequent experiments. A TMT-based proteomic analysis for liver tissue was performed in the septic rat model. Results: A total of 37,012 unique peptides were identified, and then 6,166 proteins were determined, among which 5,701 were quantifiable. Compared to the healthy control group, the septic rat group exhibited 162 upregulated and 103 downregulated differentially expressed proteins (DEPs). The upregulated and downregulated DEPs were the most significantly enriched into the complement and coagulation cascades and metabolic pathways. Protein-protein interaction (PPI) analysis further revealed that the upregulated and downregulated DEPs each clustered in a PPI network. Several highly connected upregulated and downregulated DEPs were also enriched into the complement and coagulation cascades pathways and metabolic pathways, respectively. The parallel reaction monitoring (PRM) results of the selected DEPs were consistent with the results of the TMT analysis, supporting the proteomic data. Conclusion: Our findings highlight the roles of complement and coagulation cascades and metabolic pathways that may play vital roles in the host immune response. The DEPs may serve as clinically potential treatment targets for septic liver injury.


Assuntos
Proteômica , Sepse , Ratos , Masculino , Camundongos , Animais , Ratos Sprague-Dawley , Fígado/metabolismo , Mapas de Interação de Proteínas , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...