Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 350(1-2): 172-80, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17942252

RESUMO

The purpose of this study was to determine the influences of drying efficiency and particle movement on the degree of agglomeration and yield of pellets coated under different conditions. Thermodynamic conditions were varied using different inlet air temperatures and airflow rates, fluid dynamics were varied using different airflow patterns and air velocities, and two sizes of pellets were coated at different airflow rates and partition gaps. Agglomeration was minimized when all the moisture introduced into the system was removed by the drying air. Excessively dry conditions led to increased loss of yield due to spray-drying effect and attrition. Fluid dynamics were still important even with adequate drying, as the degree of agglomeration was relatively higher in the non-swirling airflow of Wurster coating than in the swirling airflow of precision coating. Increasing air velocities increased pellet velocities, resulting in lower degrees of agglomeration. Hence, agglomeration due to fluid dynamics was attributed to differences in pellet velocities, pellet proximity and pellet trajectories within the partition column. Smaller pellets agglomerated primarily from inadequate drying and not due to inadequate opportunities for particle movement. Larger pellets were more affected by the partition gap due to restriction of their movement through the partition gap. Hence, both thermodynamics and fluid dynamics were found to be important in minimizing agglomeration and ensuring quality coated products.


Assuntos
Tecnologia Farmacêutica , Tamanho da Partícula , Temperatura , Termodinâmica
2.
Int J Pharm ; 327(1-2): 26-35, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-16920294

RESUMO

As there is strong interest in coating increasingly smaller particles or pellets for use in compacted dosage forms, there is a need for better small particle coating systems. This study explored the use of swirling airflow to enhance the performance of the bottom spray coating system. Firstly, pellet coating in the non-swirling airflow of conventional Wurster coating was compared with that of swirling airflow in precision coating under standardized conditions. Secondly, precision coating was studied in greater details at different airflow rates (60-100m(3)/h) and partition gaps (6-22mm). Precision coating was found to have higher Reynolds numbers (Re) than Wurster coating, indicating higher turbulence. It produced coated pellets of better properties than Wurster coating, having less agglomeration and gross surface defects, more uniform coats, increased flow and tapped density, and slower drug release. Higher surface roughness did not affect the yield. In precision coating, increasing airflow rates decreased the degree of agglomeration but had minimal effect on pellet quality attributes (colour intensity, colour uniformity and surface roughness) and yields. Increasing partition gaps increased the degree of agglomeration proportionally, but this effect was small. However, greater changes in yield, surface roughness, colour intensity and colour uniformity were detected. This study showed that precision coating, while having a higher drying ability, was able to maintain the same yield and produce coated pellets with superior quality compared to Wurster coating. In precision coating, airflow rate had greater influence on the drying of pellets while partition gap had greater influence on pellet quality attributes.


Assuntos
Composição de Medicamentos , Movimentos do Ar , Carboidratos/química , Clorfeniramina/química , Cor , Derivados da Hipromelose , Metilcelulose/análogos & derivados , Metilcelulose/química , Microscopia Eletrônica de Varredura , Povidona/análogos & derivados , Povidona/química , Propriedades de Superfície
3.
Int J Pharm ; 265(1-2): 103-14, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14522123

RESUMO

The objective of this study was to evaluate the effects of ultrasonication on chitosan molecules and nanoparticles. Molecular weight (M(v)) of chitosan HCl (M(v) 146 kDa and degree of deacetylation (DD) 96%) decreased linearly with increasing duration and amplitude of ultrasonication. DD and FTIR absorption were unaffected. X-ray diffraction (XRD) analysis suggested greater chain alignment in the ultrasonicated chitosan samples. Chitosan nanoparticles had mean diameter of 382 nm, polydispersity of 0.53 and zeta potential of 47 mV. Ultrasonication administered at increasing duration or amplitude decreased the mean diameter and polydispersity of the nanoparticles. Zeta potential and FTIR absorbance were unaffected, while XRD suggested a greater disarray of chain alignment in the nanoparticle matrix. Under the transmission electron microscope (TEM), freshly prepared nanoparticles were dense spherical structures which became fragmented after ultrasonication for 10 min at amplitude of 80. Untreated nanoparticle formulation turned turbid upon storage for 3 weeks at ambient conditions due to substantial swelling of the nanoparticles. Ultrasonicated nanoparticle formulation remained clear on storage. Although the particles had also swelled, they were no longer spherical, assuming instead an irregular shape with branching arms. In conclusion, high-intensity ultrasonication induced considerable damage on the chitosan nanoparticles which could affect their function as drug carriers.


Assuntos
Adjuvantes Farmacêuticos/química , Quitina/análogos & derivados , Quitina/química , Quitosana , Portadores de Fármacos/química , Microscopia Eletrônica , Peso Molecular , Nanotecnologia , Tamanho da Partícula , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...